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All references and formulas enumeration are introduced in the maternal work.

Proof of theorem 1. Consider for this system the following Lyapunov function candidate:
Vie)=7Ble | +ole ° +0.5y(e)* +0.57,e5, w(e) = e —onf| ¢ |sign(e)+ey,
1.5 2 2 1.5 2 2
NiBle|+ofe [ +0.57,e5 sV (e)<(yB+o”) e |[+oe [ +2¢f +(2+0.57,)e7,
where v; =Y, +1, 7, =1+ /9. This function is continuously differentiable outside of the origin. Note that

(nB+al)|e|+ale [ +2ef <(yB+a’+a)|e | +H(2+a)el,

then

JV symBro?+oyfle | +y/2+0 e |+/2+0.57, [e|.

The full time derivative of the function V for the system (3) can be written as follows:

V=",Bsign(e)é +1.50| e | sign(e)é; + W +7, exé, =
=—oyiB/l e [+[1 B—(t)v, 1sign(e ) e, —1.507 | ¢ [ +1.50| ¢ | sign(e) e, —x¥2 | € | ~12 € + W

Since
V=6 —0.50¢ sign(e ) /[|ef | +é =
=—04/]| ¢ |sign(el)+[0.50L2 —v(t)]sign(e ) —0.50ey sign(e )2 /e | —ysign(ey)
and
W =—150| ¢ Isign(e ) ey — ol [ +H1.50% —¥(1)]| ¢ |~y sign(ey e -
—0.50.¢3 sign(e;)” /[l e | +[0® (1) ]sign(e; ey —x | ey | +
+o[y(1)=0.50 e [ +x0] ¢ | sign(e ) sign(e; )
we have

V=—alyB+050’ —y(0)]le [+[% B+a’ —(1+7,)7(1) Isign(e e, = ¥(1) | e [~at| ¢ [ =
—x(1+v) e | =7, eg —xsign(ey ) g —O.50Le§ sign( e )2 Iyl e | +xo|e |sign(e )sign(e,).

Substituting —y sign(e, )e; <% | e | and /| e | sign(e )sign(e, )< ./| ¢ | we obtain:
V<-alyB+050% —y(t)—yxolyle [+[v B+0” —(1+7,)v(1)Isign(e; ) e, -
—Iv() -x]le [-ale [ —x(1+72) e | -vs €3 —0.50i€] sign(e )* /[]e .
Completing squares we get
V<—a[yB+0.50" —y(1)—x—0.5p(t) ] e | =[¥()—x]le | -
—ale [ =x(1+72) ey | —12 05 —e(OR(D)E(1) .

0.25

for e(t) =[] e, > | [0 sign(e;)er ],

R()=1 400 O] w0 = B0 = (141230 pl) =[v(1) /0

Such choice of the function p ensures that the matrix function R is not negative definite for all #>0. Let

yl[3+0.50L2—y(t)—x—O.Sp(t)2n>0, (13)

then for L =min{om/f yl[3+oc2+oc,[6—x]/«/2+0c,x(1+72)/1/2+0.572}



V<-anyle [=[8-x1le |-x(1+m)le | <1V,
that for any initial conditions e(0)e R? implies stability and finite-time convergence to the origin of the system (3)

trajectories with the desired upper estimate on 7;, . To verify (13) consider the function

AMYLY2Y) = NB+0.50% —y—x—0.5[(; B+0 —(1+7,)7)/ a]*,

it is necessary to find the values y; >0 and 7y, >0 such that A(7y;,Y,,7)2m>0 for all §<y< k. This function is

quadratic with respect to all its arguments, the roots with respect to the variable y; has form:

Y (12,7 =B v+ v o/ 2(vy, —0) 1.

For the chosen value of y, =1+ /98 the roots are real since yy, —% >0. Analysis of the function A shows that it is

negative for large enough negative and positive values of 7;, thus, the function is positive for

B v+ 12) —onf2(vv2 — ) 1< v <B7 Y1 +7v2) + 0/ 2(172 — 1) ] (14)

and its maximum positive value is reached for yfp ! =|3_1'y(l+yz). The chosen value

M1=72 +1:0.5[3_1(K+8)('YZ +1) is the average of ylopt for 8<y<x. Next, we have to verify that the value

Y1 =7, +1 forany 8 <y< K belongs to the interval (14), i.e.

B IY(1+72) - 2(y12 —x) 150587 (x+8) (12 + D < B~ [v(1+12) + 0/ 2(y 12— ) 1.
The latter is true if B [Kk(1+72)—0nf2(872 —%) 10587 (k+8) (v, + 1) <P [8(1+¥2) + 0y 2(372 %) 1, o,
equivalently, K —oi/2(8Y, —%) / (1+72) 0.5k +8) <8+ 01/ 2(8Y, —%) / (1+72) , that gives the conditions
0> 0.5(k—8)(1+72) /\J2(8Y2 —x) = (2+ %/ 8) (L + Ly +2%) /[ 235
The last thing to do is to evaluate M =infg<y<ic F(Y), F(Y)=M2+x/8,1+%/8,7). The function F is quadratic

with respect to y and has the negative coefficient for y2 , thus, the function F reaches for its minimum on the ends of
the interval 8 <y< K and n=min{F(3),F(x)}.
Proof of theorem 2. Consider for the system (3) the following Lyapunov function candidate:

W(e)=T(e)|e |+0.5¢3,

I'(e)= 0.5[(91/|el|)’lsign(el)(8—1<)e2+(8+K)] if |e;|<6y]¢l; A(e):{a if ee, 20;
Ae) if |e,|204/]¢ |, K if ee, <0,

where 0 >0 is the design parameter. From the function I' definition d <T'(e) < x forall ee R? , hence,

8 [ +0.5¢3 <W(e)<xk|e [+0.5¢3, W < Jx /e [+05]e, |.

The function W is continuous, but not continuously differentiable. For the case | e, | 26,/| ¢, | we have:
W(e)=A(e)| e |+0.5¢5, W =aA(e)fle | +[Ale) = Y()]eysign(e)~x e, | € <~odle | ~xl e, |-¢3 .
The case |e, | <0,/| ¢ | is more complicated:

W(e)=0.5[0""(8—K)\[| ¢ |sign(e)e, +(8+K)| ¢ []+0.5¢7,



W=050"(x-8)|e |sign(e)e, —0.2507 (k—8)|e | sign(e,)* &5 —
—0.5[o(1c+8)— (Y(1)+ sign(e; €,))07 (k=8)1/l¢ [~y ey | -€; +
+[0.5(k+8)—y(£)— 025007 (x—8)]sign(e))e, .

Since /| e | sign(e)e, <0.5]¢ [0 sign( el)2 ef +0.5]¢ > we obtain:

W <0250 (k=8)| ¢ [° —0.5[a(k+8)—(x+x)0 (k=8) 1/l e | —x e, | -3 +
+0.5(1+0.5007")(k—-8) | e, |<0.2507 (k=8) | e [° = | ey | —€3 —
—0.5[a(k+8) —[(k+%)0 +(0+0.50)](k-8)]/| ¢ |.

For some p >0, to be specified later, choose

a={p+[0+(k+x)0" 1(k-8)}/(1.58+0.5k),
then p=o(K+8)—[(k+%)0" +(08+0.50)](x—3) and

W<02507 (k-8)|e [ —xley |—€3 —0.5p ] ¢ |
Let the constraint | e, | < p8(k—8)"" hold, then

W< —0.25p\/|e—1|—x ley | —e%

and combining it with the estimate computed for the case |e, | = 6\/|71| we finally obtain:

W< W, p=min{ad/\x,025p /1,42,
that gives the required upper estimate for the time of convergence to zero 7}, . Since

3le (1) <8|e(r)|+0.5e3(r)<W(e(1))<W(e(0))<k|e(0)]+0.5¢5(0)
for the initial conditions e(0)e Q,, Q, ={ee R* x| €(0)]+0.5 ef(O) <pB8(x—38)"'} the constraint
()| <pB(1-38)"

holds for all £ >0 and the derived estimates are valid.

The last thing to do is to optimize values of the parameters 0 and p. Again, the value of W is not changing if
0.25p /[ k=12, therefore, p=4,/2Kky and ov={4/ 2Kk +[0+(k+x)0 ' ](x—-8)}/(1.58+0.5%). The func-
tion o reaches for its minimum o =2{/8xy+/x+k(x—=98)}/(1.56+0.5x) for 6=,/ y+ K« , that leads to the es-

timates given in the theorem formulation.

Proof of corollary 1.Thevalue f(¢), te R is assumed to be accessible for a designer, thus ¢ (0)=0 is

an admissible choice. The value e,(0)e [—L;,L; ] if x,(0) =0, that gives the estimate on the set of initial conditions:

0502 <42k (x+1)yx8(x-8)".
Since 4\2x2 <22 (B+L + Ly +20) X (B=Ly — Ly —2%) (L + Ly +2%) " <42k (x+ k) x8(x—3)"" this esti-
mate is satisfied if 0.5 le < 4\/3 x* , that gives the proposed choice of y admissible for any nonnegative v.

In accordance with theorem 2 result the function

w=min{o(B—L —L, =2%)/ B+ L + Ly + 2, 2}

It is easy to see, that the first term under the minimum sign is an increasing function of [, therefore, if we are able to
show that for the minimum value L; + L, +3% of B the first term is always bigger than \/E X , then the expression for

W can be simplified:



240 22L + 2L, +50) X+~ 2L + 2Ly + 6 (L + Ly +23) %/ 2L +2 Ly + 5 / (L + Ly +4%) =
>4y (L +Ly+(2+/2)0)/ (L + Ly +4%).

The function (L;+L,+(2+ \/3 Yx)/ (L +Ly+4y) is strictly decreasing in >0 and its minimum is

0.25(2++/2), therefore o(B—L —L, —2%)//B+ L +L, +2X‘B oz 2> 2y, that gives
=Li+L,+3)%

u= \/5 X = \/E (0.5870% L, +v) and the required upper estimate for 7, follows by theorem 2 result.

Proof of lemma 1. Let us start with the system (5b), considering the Lyapunov function U(x,)=0.5 x% ,
which time derivative takes form
U<2U+B-y)| x| <-U+05(B-%)>.

That implies the following time estimate

-0.5¢

| x() [ < xp(fo) e +|B—x].

Next consider the same Lyapunov function for the system (5b), U(x;)=0.5(x - f (t))2 , with the time derivative
(since f is Lipschitz continuous by Rademacher’s theorem its derivative f" exists almost everywhere in the sense of

Lebesgue measure [4], [15], |jf(t)| < C foralmostall te R):
U < a3y = F(0) |33 = F(0) |+ 5 = F(0) | 5(0)+ F(0) .
Since | x,(£) | < | xy(to) [+|B—2 ]| for | x,(25) |+ |B=%|+C <0504/ | x; —f(t)| we have:

U<=0.500/|x = f()]]x = F(£)] <0,

that implies the result.

Proof of theorem 3. The proof of this theorem follows from theorem 1 and corollary 1 under observation

that in coordinates e;(¢)=x;(¢)— 7(t), e (t)=x,(2)— f'(t) the system (5) is reduced to (3).

Proof of corollary 2. The resultis a direct consequence of theorem 3 taking in mind that A; =0, i=12.
Proof of fact 1. Consider the function p(z,q)=+/|z]|sign(z)—+/|z—q|sign(z—¢q) forany ze R, ge R .

The quantity p(z,q)=w(z,q)+/|q|sign(q) holds for w(z,q)= p(z,q)/[+/|q|sign(q)]. To show that the function

w is defined for all ze R, g€ R, note that
qlil)rlow(z,q)=qlill>10\/W/ 2=41=0, lim w(z,g)=1, Zli_tg}w(z,q)=1.

The function w is discontinuous, but well defined for the case ¢ =0. To compute maximal values of the function w

fixa ge R assuming that g #0, z#0, z# g (the values of w at these points are already computed), then
dw/dz=0 = z=0.5¢

and Wyax =SUP,e R ge R W(2,9) =wW(0.5¢,9) = V2 , that implies the claim.

Proof of theorem 4. Consider for the system (6) the same Lyapunov function as previously:

W(e)=T(e)|e |+0.5¢3,

where the function I' is defined in the proof of theorem 2. Let us start with the variant | e, | < 0,/| ¢ | , then



W(e)=0.5[0""(8-K)\/| ¢ |sign(e)e, +(8+K)| ¢ |]+0.5¢5,

W =05 9_1(1<—8)\/|71|sign(el)e2 —0.2507"(x=8) | ¢ [ sign(e)? e3 —
—0.5[ 0 (x+8)—(Y(t)+x sign(e )67 (k=8) 1[I e; | = x| es |- +
+[0.5(k+8)—y(£)— 025007 (x—8)]sign(e,) e, +
+[0.5(x+8)sign(e)+0.25(8—-x)07" ¢ [ sign(e,)* e,18, +
+[0.507"(8—1)/| ¢ | sign(e) +e,18,.

Taking in mind inequalities
\ e |sign(e)e, <0.5]¢ 703 sign(el)2 eg +0.5]¢ I,

[0.5(k+8)sign(e)+0.25(8-%)07" | [ sign(e)® e,]18, <
<[0.5(k+8)+0.25(k—8)]|8, | =(0.258+0.75%) 8§, |,

[0.567'(8—x)/| ¢ | sign(e) +e,18, <e,8,, o= {p+[0+(k+%)0 " 1(k-8)}/(1.58+0.5%)
for some p >0 (to be specified later) we obtain:
W <02507 (k-8) e [° —xle, | —€3 —0.5py[| e | +(0.255+0.75K) | §; |+, .
Let the constraint | e | < pO(K— 8)7! hold, then

W <-025py/le | —xle, | —€2 +(0.258+0.75K)| 8, | +e,8, <
<-0.25pf| ¢ | —xle, |—€2 +[(0.258+0.75k) ot +~2BO12A, ,

where we used the series of relations e,8, <2B|e, | < 239\/|71\ < 2[39\/7»_0 (the last step follows by observation that
8, =0 for | ¢ |>Ay).
For the case |e, | 2 9\/|71| we have:
W(e)=A(e)|e |+0.5¢3,

W = oA(e)yl e [ +[A(e) = Y1) ]ersign(e) —x | e, | —€; + Ae)sign(e))d; +e,8, <
<—ody|e | —xle |-+ | +5,.

According to fact 1, || < oc\/Tko , while in general case |3, | < 2B . The main issue of the last estimate is how to
treat the disturbance &, computing the required bounds on the trajectories convergence dependent on A, only. Fortu-
nately, the disturbance 9, affects negatively on the system dynamics in two compact sets only. In Fig. 4 the partition of
the planar state space of the system (6) is shown, where 8, =0 for |e; | 24y (more precisely for | ¢ |=|@]|). Since
always 8, ¢, 20 by construction of d,, then e,8, <0 in two quadrants with eje; <0. Finally, for | e, | 2 2f the ine-
quality e;0, —e% <0 is satisfied provided that always |8, | <2, and | eyd, | < 6()([3\/% for | ey | <301/2A . Thus,
appearance of the destructive amplitude 2B of the disturbance d, 1is possible into the compact set
Y={l¢g| <Ay /\3ocm< ey | <2BAeey; >0} only (see Fig. 4). Thus, for the cases |e |2A,, |0, |22 or
ejer <0 we have
W <—0d\e | —xle | +kon/ 2R, .

For the case | ey | <30, /2A we obtain

W<—08le |—x|e, |- +o(k+6B)2A, .



Combining these estimates with the one computed for the case | e, | < 9\/|71| we finally obtain:
W<~ W +[(0.258+ k) o+ max (26,6} B1y/21, ,
where as in theorem 2 proof W= min{ad/ \/;,O.ZSp / ﬁ,ﬁ X}, this estimate is valid for all
ec {ec R*\ Y| el< pG(K—S)_1 } , that gives the following time estimate for any ¢ >#, 2 0:
W (1) < max {[max{\JW (1) —0.251(t —£,)]*,0}, 8 >[(0.258 + k) o+ max {/26,6 } B &g} -

Now let us compute the estimate on the system (6) solutions into the set Y . This set is composed by two disjoin

subsets, where for the first one the constraints 0 <¢; <A, 3&% <e, <2B, ee, >0 hold. Then
& =—onf] e | sign(e ) +e, +8; = —0n/hg +304/2hg —0[2h = 04[22
and the time 7; of the set Y crossing by the system (6) trajectories is upper bounded as follows (the time of passing
from 0 to A, with the minimal rate ocm ):
Ty <A 1 (02).

For the second subset where 0> ¢ >—1,, —3&% >e, >-2B, ¢e, >0 the same estimate can be computed simi-
larly. The set Y also can be left in the direction of the variable e, , but we are looking for the maximal time of the tra-
jectories stay into the set T, and the estimate on 7; is sufficient (if the system exits from the set Y faster in the direc-
tion e, thanin e, then 7] is still the maximal time of stay into the set; if the time of the set Y crossing for the variable

e, is bigger than 7, then it is not important since the trajectories exit the set in time 7} at the maximum). The follow-

ing estimate for the Lyapunov function holds in Y (actually being the worst case estimate it is satisfied for all

ley [204]e|):
W <08l e |—x e | +K0n2hy + B> <~ + 1020, + B2,

where we used the fact that for |§, | <2 the inequality e,0, — e% <B? holds for any e, € R. Let us introduce into

consideration for any ¢ >#, >0 the variable
S()=W(6)=s(t), s(t) = L’ Koy[2hg +BdT, s€ R,,
then S=W— K(xm+[32 < —u\/W < —pymax{S+s,0} < —u\/E. Therefore, for any (=720 we have
() < max{[/S(t,) - 0.51(t — 1,)*,0} and
W (1) = S(£) + (1) < max{[\JW (1) — 0.5u(t — 1)), 0} + j[’ Koty [2hg + BT
For the trajectories into the set ' we know that ¢ <¢, + \/7»_0 / (OL\/E ), consequently

W (1) < max{[\JW (1, ) — 0.50(t — 1), 0} + (/A + B / (02))\A, -
Taking maximum over all estimates obtained for the Lyapunov function ' we obtain forall 1>0:
W (1) < max{[\JW(0) - 0.250 1,0} + kg + ¢34/
¢, = max{8u2[(0.258+ k) 0 + max{~26,6} B, k}, ¢, =PB* / (0/2).
Since

8e(1)| <8]e(t)|+0.5€3 (1) <W(e(1))< x| (0)[+0.5¢3(0)+cihg +cyfhg



for the initial conditions e(0)e Q,, Q,={ec R*:k|e(0)|+0.5¢5(0)<0.5p08(x—38)"'} and the measurement

noise cjhg +cy4/Ag <0.5p08(x—8)"" the constraint | e ()| <pO(x—8)~" holds for all 7>0 and the derived esti-

mates are valid.

The last thing to do is to optimize values of the design parameters 6 and p as in theorem 2. The value of 1 is not
changing if 0.25p//k=/2%, then p=4,/2xy and o= {42y +[0+(k+x)0 ' [(k=8)}/(1.58+0.5k). The
function o reaches its minimum o =2{/ 8Ky ++/x+x(x—-08)}/(1.586+0.5x) for 6=./y+ K, that leads to the

estimates given in the theorem formulation.

Proof of theorem 5. The dynamics of the system (5) can be reduced to (3) and if ¢(¢) =0, 1 =0 then nec-

essarily e,(#)=0, t=0. From lemma 1 even for wrongly chosen parameters of the system (5) the solutions are always

bounded. According to theorem 3, if the conditions l~,{ > L~l~ , 1=1,2 are satisfied, then for initial conditions (10) in the

system (5) it holds that x;(¢) = (1) (e(t)=0) forall 127+ TOj and the desired estimates (12) hold. If a finite in-

stant 7;,; appears in (11), then the values I 1, i=1,2 increase in accordance with (7). Since L;eR,, i=12, then

either there exists N >0 such that va > Z,- , i=1,2 and the result of theorem 3 holds, either the conditions (12) are

satisfied after some step j >0 forall >¢; + TO/ . In both cases there exists a finite time 7 2 0.



