Chapter 14

Sets, Functions and Metric Spaces

14.1 Functions and sets

14.1.1 The function concept

Definition 14.1 Let us consider two sets A and B whose elements may be any objects whatsoever. Suppose that with each element $x \in A$ there is associated, in some manner, an element $y \in \mathcal{B}$ which we denote by $y = f(x)$.

- 1. Then f is said to be a **function** from A to B or a **mapping** of A into B.
- 2. If $\mathcal{E} \subset \mathcal{A}$ then $f(\mathcal{E})$ is defined to be the set of all elements $f(x)$, $x \in \mathcal{E}$ and it is called the image of \mathcal{E} under f. The notations $f(A)$ is called the **range** of f (evidently, that $f(A) \subseteq B$). If $f(A) = B$ we say that f maps A onto B.
- 3. For $\mathcal{D} \subset \mathcal{B}$ the notation $f^{-1}(\mathcal{D})$ denotes the set of all $x \in \mathcal{A}$ such that $f(x) \in \mathcal{B}$. We call $f^{-1}(\mathcal{D})$ the **inverse image** of D under f. So, if $y \in \mathcal{D}$ then $f^{-1}(y)$ is the set of all $x \in \mathcal{A}$ such that $f(x) = y$. If for each $y \in \mathcal{B}$ the set $f^{-1}(y)$ consists of at most one element of A then f is said to be one-to-one mapping of A to B .

The one-to-one mapping f means that $f(x_1) \neq f(x_2)$ if $x_1 \neq x_2$ for any $x_1, x_2 \in \mathcal{A}$. We often will use the following notation for the mapping f :

$$
f: \mathcal{A} \to \mathcal{B} \tag{14.1}
$$

If, in particular, $\mathcal{A} = \mathbb{R}^n$ and $\mathcal{B} = \mathbb{R}^m$ we will write

$$
f: \mathbb{R}^n \to \mathbb{R}^m
$$
 (14.2)

Definition 14.2 If for two sets A and B there exists an one-to-one mapping then we say that these sets are **equivalent** and we write

$$
A \sim B \tag{14.3}
$$

Claim 14.1 The relation of equivalency (\sim) clearly has the following properties:

- a) it is reflexive, i.e., $A \sim A$;
- b) it is symmetric, i.e., if $A \sim B$ then $B \sim A$;
- c) it is **transitive**, i.e., if $A \sim B$ and $B \sim C$ then $A \sim C$.

14.1.2 Finite, countable and uncountable sets

Denote by \mathcal{J}_n the set of positive numbers $1, 2, ..., n$, that is,

$$
\mathcal{J}_n = \{1, 2, \ldots, n\}
$$

and by $\mathcal J$ we will denote the set of all positive numbers, namely,

$$
\boxed{\mathcal{J} = \{1,2,\ldots\}}
$$

Definition 14.3 For any A we say:

1. A is finite if

$$
\mathcal{A}\sim\mathcal{J}_n
$$

for some finite n (the **empty set** \varnothing , which does not contain any element, is also considered as finite);

2. A is countable (enumerable or denumerable) if

 $\mathcal{A} \sim \mathcal{J}$

3. A is uncountable if it is neither finite nor countable;

4. A is at most countable if it is both finite or countable.

Evidently that if A is infinite then it is equivalent to one of its subsets. Also it is clear that any infinite subset of a countable set is countable.

Definition 14.4 By a sequence we mean a function f defined on the set $\mathcal J$ of all positive integers. If $x_n = f(n)$ it is customarily to denote the corresponding sequence by

 ${x_n} := {x_1, x_2, \dots}$

(sometimes, this sequence starts with x_0 but not with x_1).

Claim 14.2

- 1. The set N of all integers is countable:
- 2. The set Q of all rational numbers is countable;
- 3. The set $\mathbb R$ of all real numbers is uncountable.

14.1.3 Algebra of sets

Definition 14.5 Let A and Ω be sets. Suppose that with each element $\alpha \in \mathcal{A}$ there is associated a subset $\mathcal{E}_{\alpha} \subset \Omega$. Then

a) The **union** of the sets \mathcal{E}_{α} is defined to be the set S such that $x \in S$ if and only if $x \in \mathcal{E}_{\alpha}$ at least for one $\alpha \in \mathcal{A}$. It will be denoted by

$$
\mathcal{S} := \bigcup_{\alpha \in A} \mathcal{E}_{\alpha} \tag{14.4}
$$

If A consists of all integers $(1, 2, ..., n)$, that means, $\mathcal{A} = \mathcal{J}_n$, we will use the notation

$$
\mathcal{S} := \bigcup_{\alpha=1}^{n} \mathcal{E}_{\alpha} \tag{14.5}
$$

and if A consists of all integers $(1, 2, ...)$, that means, $A = \mathcal{J}$, we will use the notation

$$
\mathcal{S} := \bigcup_{\alpha=1}^{\infty} \mathcal{E}_{\alpha}
$$
 (14.6)

b) The **intersection** of the sets \mathcal{E}_{α} is defined as the set P such that $x \in \mathcal{P}$ if and only if $x \in \mathcal{E}_{\alpha}$ for every $\alpha \in \mathcal{A}$. It will be denoted by

$$
\mathcal{S} := \bigcap_{\alpha \in \mathcal{A}} \mathcal{E}_{\alpha} \tag{14.7}
$$

If A consists of all integers $(1, 2, ..., n)$, that means, $A = \mathcal{J}_n$, we will use the notation

$$
S := \bigcap_{\alpha=1}^{n} \mathcal{E}_{\alpha}
$$
 (14.8)

and if A consists of all integers $(1, 2, ...)$, that means, $A = J$, we will use the notation

$$
S := \bigcap_{\alpha=1}^{\infty} \mathcal{E}_{\alpha}
$$
 (14.9)

If for two sets A and B we have $A \cap B = \emptyset$, we say that these two sets are disjoint.

c) The **complement** of A relative to B, denoted by $\mathcal{B} - \mathcal{A}$, is defined to be the set

$$
\mathcal{B} - \mathcal{A} := \{x : x \in \mathcal{B}, \text{ but } x \notin \mathcal{A}\}\
$$
 (14.10)

The sets $A \cup B$, $A \cap B$ and $B - A$ are illustrated at Fig.14.1.

Using these graphic illustrations it is possible easily to prove the following set-theoretical identities for union and intersection.

Proposition 14.1

1.

$$
\mathcal{A} \cup (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \cup \mathcal{B}) \cup \mathcal{C}, \ \mathcal{A} \cap (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \cap \mathcal{B}) \cap \mathcal{C}
$$

Figure 14.1: Two sets relations.

if and only if $\mathcal{B} \subseteq \mathcal{A}$.

8.

$$
\boxed{\mathcal{A}\subset\mathcal{A}\cup\mathcal{B},\, \mathcal{A}\cap\mathcal{B}\subset\mathcal{A}}
$$

9.

$$
\mathcal{A}\cup\varnothing=\mathcal{A},\, \mathcal{A}\cap\varnothing=\varnothing
$$

10.

$$
\mathcal{A} \cup \mathcal{B} = \mathcal{B}, \, \mathcal{A} \cap \mathcal{B} = \mathcal{A}
$$

if $\mathcal{A} \subset \mathcal{B}$.

The next relations generalize the previous unions and intersections to arbitrary ones.

Proposition 14.2

1. Let $f : S \to T$ be a function and A, B any any subsets of S. Then

$$
f(\mathcal{A} \cup \mathcal{B}) = f(\mathcal{A}) \cup f(\mathcal{B})
$$

2. For any $\mathcal{Y} \subseteq \mathcal{T}$ define $f^{-1}(\mathcal{Y})$ as the largest subset of S which f maps into Y . Then

a)

$$
\mathcal{X}\subseteq f^{-1}\left(f\left(\mathcal{X}\right)\right)
$$

b)

and

$$
f(f^{-1}(\mathcal{Y})) \subseteq \mathcal{Y}
$$

 $f(f^{-1}(\mathcal{Y})) = \mathcal{Y}$ if and only if $\mathcal{T} = f(\mathcal{S})$.

c)

 $i^{-1} (\mathcal{Y}_1 \cup \mathcal{Y}_2) = f^{-1} (\mathcal{Y}_1) \cup f^{-1} (\mathcal{Y}_2)$

d)

$f^{-1}(\mathcal{Y}_1 \cap \mathcal{Y}_2) = f^{-1}(\mathcal{Y}_1) \cap f^{-1}(\mathcal{Y}_2)$

e)

$$
f^{-1}(T - \mathcal{Y}) = \mathcal{S} - f^{-1}(\mathcal{Y})
$$

and for subsets $\mathcal{B} \subseteq \mathcal{A} \subseteq \mathcal{S}$ it follows that

$$
f(\mathcal{A} - \mathcal{B}) = f(\mathcal{A}) - f(\mathcal{B})
$$

14.2 Metric spaces

14.2.1 Metric definition and examples of metrics

Definition 14.6 A set \mathcal{X} , whose elements we shall call points, is said to be a **metric space** if with any two points p and q of X there is associated a real number $d(p,q)$, called a **distance** between p and q, such that

a)

$$
\begin{array}{c}\n d(p,q) > 0 \text{ if } p \neq q \\
d(p,p) = 0\n \end{array}
$$
\n(14.11)

b)

$$
d(p,q) = d(q,p)
$$
 (14.12)

c) for any $r \in \mathcal{X}$ the following "triangle inequality" holds:

$$
d(p,q) \le d(p,r) + d(r,q)
$$
 (14.13)

Any function with these properties is called a **distance function** or a metric.

Example 14.1 The following functions are metrics:

- 1. For any p, q from the **Euclidian space** \mathbb{R}^n
	- a) the **Euclidian metric**:

$$
d(p,q) = ||p - q|| \tag{14.14}
$$

b) the discrete metric:

$$
d(p,q) = \begin{cases} 0 & if \ p = q \\ 1 & if \ p \neq q \end{cases}
$$
 (14.15)

c) the weighted metric:

$$
d(p,q) = ||p - q||_Q := \sqrt{(p - q)^T Q (p - q)}
$$

$$
Q = Q^T > 0
$$
 (14.16)

d) the module metric:

$$
d(p,q) = \sum_{i=1}^{n} |p_i - q_i|
$$
 (14.17)

e) the Chebyshev's metric:

$$
d(p,q) = \max\{|p_1 - q_1|, ..., |p_n - q_n|\}\
$$
 (14.18)

f) the Prokhorov's metric:

$$
d(p,q) = \frac{\|p-q\|}{1 + \|p-q\|} \in [0,1)
$$
\n(14.19)

2. For any z_1 and z_2 of the **complex plane** $\mathbb C$

$$
\sqrt{(Re(z_1, z_2)) = |z_1 - z_2|} = \sqrt{(Re(z_1 - z_2))^2 + (Im(z_1 - z_2))^2}
$$
\n(14.20)

14.2.2 Set structures

Let X be a metric space. All points and sets mentioned below will be understood to be elements and subsets of \mathcal{X} .

Definition 14.7

a) A neighborhood of a point x is a set $\mathcal{N}_r(x)$ consisting of all points y such that $d(x, y) < r$ where the number r is called the radius of $\mathcal{N}_r(x)$, that is,

$$
\mathcal{N}_r(x) := \{ x \in \mathcal{X} : d(x, y) < r \} \tag{14.21}
$$

- b) A point $x \in \mathcal{X}$ is a **limit point** of the set $\mathcal{E} \subset \mathcal{X}$ if every neighborhood of x contains a point $y \neq x$ such that $q \in \mathcal{E}$.
- c) If $x \in \mathcal{E}$ and x is not a limit point of then x is called an **isolated** point of $\mathcal E$.
- d) $\mathcal{E} \subset \mathcal{X}$ is **closed** if every limit of \mathcal{E} is a point of \mathcal{E} .
- e) A point $x \in \mathcal{E}$ is an **interior point** of \mathcal{E} if there is a neighborhood of $\mathcal{N}_r(x)$ of x such that $\mathcal{N}_r(x) \subset \mathcal{E}$.
- f) $\mathcal E$ is open if every point of $\mathcal E$ is an interior point of $\mathcal E$.
- g) The **complement** \mathcal{E}^c of \mathcal{E} is the set of all points $x \in \mathcal{X}$ such that $x \notin \mathcal{E}$.
- h) $\mathcal E$ is **bounded** if there exists a real number M and a point $x \in \mathcal E$ such that $d(x, y) < M$ for all $y \in \mathcal{E}$.
- i) $\mathcal E$ is **dense** in $\mathcal X$ if every point $x \in \mathcal X$ is a limit point of $\mathcal E$, or a point of $\mathcal E$, or both.
- i) $\mathcal E$ is connected in $\mathcal X$ if it is not a union of two nonempty separated sets, that is, $\mathcal E$ can not be represented as $\mathcal E = \mathcal A \cup \mathcal B$ where $A \neq \emptyset$, $B \neq \emptyset$ and $A \cap B = \emptyset$.

Example 14.2 The set $J_{open}(p)$ defined as

$$
J_{open} := \{ x \in \mathcal{X}, \ d(x, p) < r \}
$$

is an open set but the set $J_{closed}(p)$ defined as

$$
J_{closed}(p) := \{ x \in \mathcal{X}, \ d(x, p) \le r \}
$$

is closed.

The following claims seem to be evident and, that's why, they are given without proofs.

Claim 14.3

- 1. Every neighborhood $\mathcal{N}_r(x) \subset \mathcal{E}$ is an open set.
- 2. If x is a limit point of $\mathcal E$ then every neighborhood $\mathcal N_r(x) \subset \mathcal E$ contains infinitely many points of $\mathcal{E}.$
- 3. A finite point set has no limit points.

Let us prove the following lemma concerning complement sets.

Lemma 14.1 Let $\{\mathcal{E}_{\alpha}\}\$ be a collection (finite or infinite) of sets $\mathcal{E}_{\alpha} \subseteq$ X. Then $\frac{1}{\sqrt{c}}$

$$
\left[\left(\bigcup_{\alpha} \mathcal{E}_{\alpha} \right)^{c} = \bigcap_{\alpha} \mathcal{E}_{\alpha}^{c} \right]
$$
 (14.22)

Proof. If $x \in$ $\sqrt{2}$ α \mathcal{E}_{α} \int_0^c then, evidently, $x \notin \bigcup$ α \mathcal{E}_{α} and, hence, $x \notin \mathcal{E}_{\alpha}$ for any α . This means that $x \in \bigcap$ α \mathcal{E}_{α}^c . Thus,

$$
\left(\bigcup_{\alpha} \mathcal{E}_{\alpha}\right)^{c} \subseteq \bigcap_{\alpha} \mathcal{E}_{\alpha}^{c}
$$
\n(14.23)

Conversely, if $x \in \bigcap$ α \mathcal{E}_{α}^c then $x \in \mathcal{E}_{\alpha}^c$ for every α and, hence, $x \notin \bigcup_{\alpha}$ \mathcal{E}_{α} . So, $x \in$ $\frac{1}{2}$ α \mathcal{E}_{α} that implies $\sum_{i=1}^{n}$

$$
\bigcap_{\alpha} \mathcal{E}_{\alpha}^{c} \subseteq \left(\bigcup_{\alpha} \mathcal{E}_{\alpha}\right)^{c} \tag{14.24}
$$

Combining (14.23) and (14.24) gives (14.22). Lemma is proven. \blacksquare This lemma provides the following corollaries.

Corollary 14.1

- a) A set $\mathcal E$ is open if and only if its complement $\mathcal E^c$ is closed.
- b) A set $\mathcal E$ is closed if and only if its complement $\mathcal E^c$ is open.
- c) For any collection $\{\mathcal{E}_{\alpha}\}\,$ of open sets \mathcal{E}_{α} the set \bigcup α \mathcal{E}_{α} is open.
- d) For any collection $\{\mathcal{E}_{\alpha}\}\$ of closed sets \mathcal{E}_{α} the set \bigcap α \mathcal{E}_{α}^{c} is closed.
- e) For any finite collection $\{\mathcal{E}_1, ..., \mathcal{E}_n\}$ of open sets \mathcal{E}_{α} the set \bigcap α \mathcal{E}_{α}^{c} is open too.
- f) For any finite collection $\{\mathcal{E}_1, ..., \mathcal{E}_n\}$ of closed sets \mathcal{E}_{α} the set \bigcup α \mathcal{E}_{α} is closed too.

Definition 14.8 Let X be a metric space and $\mathcal{E} \subset \mathcal{X}$. Denote by \mathcal{E}' the set of all limit points of $\mathcal E$. Then the set $\mathrm{cl}\mathcal E$ defined as

$$
\text{cl}\mathcal{E} := \mathcal{E} \cup \mathcal{E}' \tag{14.25}
$$

is called the **closure** or \mathcal{E} .

The next properties seem to be logical consequences of this definition.

Proposition 14.3 If X be a metric space and $\mathcal{E} \subset \mathcal{X}$, then

- a) cl $\mathcal E$ is closed:
- b) $\mathcal{E} = \text{cl}\mathcal{E}$ if and only if \mathcal{E} is closed;
- c) cl $\mathcal{E} \subset \mathcal{P}$ for every closed set $\mathcal{P} \subset \mathcal{X}$ such that $\mathcal{E} \subset \mathcal{P}$;
- d) If is a nonempty set of real numbers which is bounded above, *i.e.*, $\emptyset \neq \mathcal{E} \subset \mathbb{R}$ and $y := \sup \mathcal{E} < \infty$. Then $y \in \mathrm{cl}\mathcal{E}$ and, hence, $y \in \mathcal{E}$ if $\mathcal E$ is closed.

Proof.

a) If $x \in \mathcal{X}$ and $y \notin \text{cl}\mathcal{E}$ then x is neither a point of \mathcal{E} nor a limit point of \mathcal{E} . Hence x has a neighborhood which does not intersect \mathcal{E} . Therefore the complement \mathcal{E}^c of $\mathcal E$ is an open set. So, cl $\mathcal E$ is closed.

b) If $\mathcal{E} = \text{cl}\mathcal{E}$ then by a) it follows that \mathcal{E} is closed. If \mathcal{E} is closed then for \mathcal{E}' , defined in (14.8), we have that $\mathcal{E}' \subset \mathcal{E}$. Hence, $\mathcal{E} = \text{cl}\mathcal{E}$.

c) P is closed and $P \supset \mathcal{E}$ (defined in (14.8)) then $P \supset P'$ and, hence, $P \supset \mathcal{E}'$. Thus $P \supset \text{cl}\mathcal{E}$.

d) If $y \in \mathcal{E}$ then $y \in \text{cl}\mathcal{E}$. Assume $y \notin \mathcal{E}$. Then for any $\varepsilon > 0$ there exists a point $x \in \mathcal{E}$ such that $y - \varepsilon < x < y$, for otherwise $(y - \varepsilon)$ would be an upper bound of $\mathcal E$ that contradicts to the supposition $\sup \mathcal{E} = y$. Thus y is a limit point of \mathcal{E} . Hence, $y \in \text{cl}\mathcal{E}$.

The proposition is proven. \blacksquare

Definition 14.9 Let \mathcal{E} be a set of a metric space \mathcal{X} . A point $x \in \mathcal{E}$ is called **a boundary point** of \mathcal{E} if any neighborhood $\mathcal{N}_r(x)$ of this point contains at least one point of $\mathcal E$ and at least one point of $\mathcal X - \mathcal E$. The set of all boundary points of $\mathcal E$ is called the **boundary of the set** $\mathcal E$ and is denoted by $\partial \mathcal E$.

It is not difficult to verify that

$$
\partial \mathcal{E} = \text{cl}\mathcal{E} \cap \text{cl}(\mathcal{X} - \mathcal{E})
$$
\n(14.26)

Denoting by

$$
int \mathcal{E} := \mathcal{E} - \partial \mathcal{E}
$$
 (14.27)

the set of all internal points of the set \mathcal{E} , it is easily verify that

$$
\text{int}\mathcal{E} = \mathcal{X} - \text{cl}(\mathcal{X} - \mathcal{E})
$$

\n
$$
\text{int}(\mathcal{X} - \mathcal{E}) = \mathcal{X} - \text{cl}\mathcal{E}
$$

\n
$$
\text{int}(\text{int}\mathcal{E}) = \text{int}\mathcal{E}
$$

\nIf $\text{cl}\mathcal{E} \cap \text{cl}\mathcal{D} = \varnothing$ then $\partial(\mathcal{E} \cup \mathcal{D}) = \partial \mathcal{E} \cup \partial \mathcal{D}$ (14.28)

14.2.3 Compact sets

Definition 14.10

1. By an open cover of a set $\mathcal E$ in a metric space $\mathcal X$ we mean a collection $\{\mathcal{G}_{\alpha}\}\$ of open subsets of X such that

$$
\mathcal{E} \subset \bigcup_{\alpha} \mathcal{G}_{\alpha} \tag{14.29}
$$

2. A subset K of a metric space X is said to be **compact** if every open cover of K contains a finite subcover, more exactly, there are a finite number of indices $\alpha_1, \ldots, \alpha_n$ such that

$$
\mathcal{E} \subset \mathcal{G}_{\alpha_1} \cup \cdots \cup \mathcal{G}_{\alpha_n}
$$
 (14.30)

Remark 14.1 Evidently that every finite set is compact.

Theorem 14.1 A set $K \subset \mathcal{Y} \subset \mathcal{X}$ is a compact relative to X if and only if K is a compact relative to $\mathcal Y$.

Proof. Necessity. Suppose K is a compact relative to X. Hence, by the definition (14.30) there exists its finite subcover such that

$$
\mathcal{K} \subset \mathcal{G}_{\alpha_1} \cup \cdots \cup \mathcal{G}_{\alpha_n} \tag{14.31}
$$

where \mathcal{G}_{α_i} is an open set with respect to X. On the other hand where \mathcal{G}_{α_i} is an open set with respect to X. On the other hand $\mathcal{K} \subset \bigcup \mathcal{V}_{\alpha}$ where $\{\mathcal{V}_{\alpha}\}\$ is a collection of sets open with respect to \mathcal{Y} . But any open set \mathcal{V}_{α} can be represented as $\mathcal{V}_{\alpha} = \mathcal{Y} \cap \mathcal{G}_{\alpha}$. So, (14.31) implies

$$
\mathcal{K} \subset \mathcal{V}_{\alpha_1} \cup \cdots \cup \mathcal{V}_{\alpha_n} \tag{14.32}
$$

Sufficiency. Conversely, if K is a compact relative to $\mathcal Y$ then there exists a finite collection $\{\mathcal{V}_{\alpha}\}\$ of open sets in $\mathcal Y$ such that (14.32) holds. Putting $\mathcal{V}_\alpha = \mathcal{Y} \cap \mathcal{G}_\alpha$ for a special choice of indices $\alpha_1, ..., \alpha_n$ it follows that $\mathcal{V}_{\alpha} \subset \mathcal{G}_{\alpha}$ that implies (14.31). Theorem is proven.

Theorem 14.2 Compact sets of metric spaces are closed.

Proof. Suppose K is a compact subset of a metric space X. Let $x \in \mathcal{X}$ but $x \notin \mathcal{K}$ and $y \in \mathcal{K}$. Consider the neighborhoods $\mathcal{N}_r(x)$ $\mathcal{N}_r(y)$ of these points with $r <$ 1 $\frac{1}{2}d(x,y)$. Since K is a compact there are finitely many points $y_1, ..., y_n$ such that

$$
\mathcal{K} \subset \mathcal{N}_r(y_1) \cup \cdots \cup \mathcal{N}_r(y_n) = \mathcal{N}
$$

If $V = \mathcal{N}_{r_1}(x) \cap \cdots \cap \mathcal{N}_{r_n}(x)$, then evidently V is a neighborhood of x which does not intersect $\mathcal N$ and, hence, $\mathcal V \subset \mathcal K^c$. So, x is an interior point of \mathcal{K}^c . Theorem is proven.

The following two propositions seem to be evident.

Proposition 14.4

- 1. Closed subsets of compact sets are compacts too.
- 2. If F is closed and K is compact then $\mathcal{F} \cap \mathcal{K}$ is compact.

Theorem 14.3 If $\mathcal E$ is an infinite subset of a compact set $\mathcal K$ then $\mathcal E$ has a limit point in K .

Proof. If no point of K were a limit point of \mathcal{E} then $y \in \mathcal{K}$ would have a neighborhood $\mathcal{N}_r(y)$ which contains at most one point of $\mathcal E$ (namely, y if $y \in \mathcal{E}$). It is clear that no finite subcollection $\{\mathcal{N}_{r_k}(y)\}\$ can cover \mathcal{E} . The same is true of \mathcal{K} since $\mathcal{E} \subset \mathcal{K}$. But this contradicts the compactness of K . Theorem is proven. \blacksquare

The next theorem explains the compactness property especially in \mathbb{R}^n and is often applied in a control theory analysis.

Theorem 14.4 If a set $\mathcal{E} \subset \mathbb{R}^n$ then the following three properties are equivalent:

- a) $\mathcal E$ is closed and bounded.
- b) $\mathcal E$ is compact.
- c) Every infinite subset of $\mathcal E$ has a limit point in $\mathcal E$.

Proof. It is the consequence of all previous theorems and propositions and stay for readers consideration. The details of the proof can be found in Chapter 2 of (Rudin 1976). \blacksquare

Remark 14.2 Notice that properties b) and c) are equivalent in any metric space, but a) not.

14.2.4 Convergent sequences in metric spaces

Convergence

Definition 14.11 A sequence $\{x_n\}$ in a metric space X is said to **converge** if there is a point $x \in \mathcal{X}$ for which for any $\varepsilon > 0$ there exists an integer n_{ε} such that $n \geq n_{\varepsilon}$ implies that $d(x_n, x) < \varepsilon$. Here $d(x_n, x)$ is the metric (distance) in X. In this case we say that $\{x_n\}$ converges to x, or that x is a limit of $\{x_n\}$, and we write

$$
\lim_{n \to \infty} x_n = x \text{ or } x_n \xrightarrow[n \to \infty]{} x \tag{14.33}
$$

If $\{x_n\}$ does not converge, it is usually said to **diverge**.

Example 14.3 The sequence $\{1/n\}$ converge to 0 in R, but fails to converge in $\mathbb{R}_+ := \{x \in \mathbb{R} \mid x > 0\}.$

Theorem 14.5 Let $\{x_n\}$ be a sequence in a metric space X.

1. $\{x_n\}$ converges to $x \in \mathcal{X}$ if and only if every neighborhood $\mathcal{N}_{\varepsilon}(x)$ of x contains all but (excluding) finitely many of the terms of ${x_n}.$

2. If $x', x'' \in \mathcal{X}$ and

$$
\boxed{x_n \underset{n \to \infty}{\to} x' \text{ and } x_n \underset{n \to \infty}{\to} x''}
$$

 $x' = x''$

then

- 3. If $\{x_n\}$ converges then $\{x_n\}$ is bounded.
- 4. If $\mathcal{E} \subset \mathcal{X}$ and x is a limit point of \mathcal{E} then there is a sequence ${x_n}$ in $\mathcal E$ such that $x = \lim_{n \to \infty} x_n$.

Proof.

1. a) Necessity. Suppose $x_n \underset{n \to \infty}{\to} x$ and let $\mathcal{N}_{\varepsilon}(x)$ (for some $\varepsilon > 0$) be a neighborhood of x. The conditions $d(y, x) < \varepsilon, y \in \mathcal{X}$ imply $y \in \mathcal{N}_{\varepsilon}(x)$. Corresponding to this ε there exists a number n_{ε} such that for any $n \geq n_{\varepsilon}$ it follows that $d (x_n, x) < \varepsilon$. Thus, $x_n \in \mathcal{N}_{\varepsilon}(x)$. So, all x_n are bounded.

b) Sufficiency. Conversely, suppose every neighborhood of x contains all but finitely many of the terms of $\{x_n\}$. Fixing $\varepsilon > 0$ denoting by $\mathcal{N}_{\varepsilon}(x)$ the set of all $y \in \mathcal{X}$ such that $d(y, x) < \varepsilon$. By the assumption there exists n_{ε} such that for any $n \geq n_{\varepsilon}$ it follows that $x_n \in \mathcal{N}_{\varepsilon} (x)$. Thus $d(x_n, x) < \varepsilon$ if $n \geq n_{\varepsilon}$ and, hence, $x_n \underset{n \to \infty}{\to} x$.

- 2. For the given $\varepsilon > 0$ there exist integers n' and n'' such that $n > n'$ implies $d(x_n, x') < \varepsilon/2$ and $n \ge n''$ implies $d(x_n, x'') < \varepsilon/2$. So, for $n \ge \max{\{n', n''\}}$ it follows $d(x', x'') \le d(x', x_n) + d(x_n, x'') <$ ε . Taking ε small enough we conclude that $d(x', x'') = 0$.
- 3. Suppose $x_n \rightarrow x$. Then, evidently there exists an integer n_0 such that for all $n \geq n_0$ we have that $d(x_n, x) < 1$. Define $r := \max\{1, d(x_1, x), ..., d(x_{n_0}, x)\}.$ Then $d(x_n, x) < r$ for all $n = 1, 2, ...$
- 4. For any integer $n = 1, 2, \dots$ there exists a point $x_n \in \mathcal{E}$ such that $d(x_n, x) < 1/n$. For any given $\varepsilon > 0$ define n_{ε} such that $\varepsilon n_{\varepsilon} > 1$. Then for $n \geq n_{\varepsilon}$ one has $d(x_n, x) < 1/n < \varepsilon$ that means that $x_n \underset{n \to \infty}{\to} x$.

This completes the proof. ■

Subsequences

Definition 14.12 Given a sequence $\{x_n\}$ let us consider a sequence ${n_k}$ of positive integers satisfying $n_1 < n_2 < \cdots$. Then the sequence ${x_{n_k}}$ is called a **subsequence** of ${x_n}$.

Claim 14.4 If a sequence $\{x_n\}$ converges to x then any subsequence ${x_{n_k}}$ of ${x_n}$ converges to the same limit point x.

Proof. This result can be easily proven by contradiction. Indeed, **Proof**. This result can be easily proven by contradiction. Indeed, assuming that two different subsequences $\{x_{n_k}\}\$ and $\{x_{n_j}\}\$ have different limit points x' and x'' , then it follows that there exists 0 < $\varepsilon < d(x', x'')$ and a number k_{ε} such that for all $k \geq k_{\varepsilon}$ we shall have: $d(x_{n_k}, x_{n_j}) > \varepsilon$ that is in the contradiction with the assumption that ${x_n}$ converges. \blacksquare

Theorem 14.6

- a) If $\{x_n\}$ is a sequence in a compact metric space X then it obligatory contains some subsequence $\{x_{n_k}\}\$ convergent to a point of \mathcal{X} .
- b) Any bounded sequence in \mathbb{R}^n contains a convergent subsequent.

Proof.

a) Let $\mathcal E$ be the range of $\{x_n\}$. If $\{x_n\}$ converges then the desired subsequence is this sequence itself. Suppose that $\{x_n\}$ diverges. If $\mathcal E$ is finite then obligatory there is a point $x \in \mathcal{E}$ and numbers $n_1 < n_2 < \cdots$ such that $x_1 = x_2 = \cdots = x$. The subsequence $\{x_{n_k}\}$ so obtained converges evidently to x. If $\mathcal E$ is infinite then by Theorem (14.3) $\mathcal E$ has a limit point $x \in \mathcal{X}$. Choose n_1 so that $d(x_{n_1}, x) < 1$, and, hence, there are integer $n_i > n_{i-1}$ such that $d(x_{n_i}, x) < 1/i$. This means that x_{n_i} converges to x .

b) This follows from a) since Theorem (14.4) implies that every bounded subset of \mathbb{R}^n lies in a compact sunset of \mathbb{R}^n .

Theorem is proven. \blacksquare

Cauchy sequences

Definition 14.13 A sequence $\{x_n\}$ in a metric space X is said to be a **Cauchy** (fundamental) sequence if for every $\varepsilon > 0$ there is an integer n_{ε} such that $d(x_n, x_m) < \varepsilon$ if both $n \geq n_{\varepsilon}$ and $m \geq n_{\varepsilon}$.

Defining the *diameter* of $\mathcal E$ as

$$
\text{diam } \mathcal{E} := \sup_{x,y \in \mathcal{E}} d(x,y) \tag{14.34}
$$

one may conclude that if $\mathcal{E}_{n_{\varepsilon}}$ consists of the points $\{x_{n_{\varepsilon}}, x_{n_{\varepsilon}+1}, ...\}$ then ${x_n}$ is a Cauchy sequence if and only if

$$
\lim_{n_{\varepsilon}\to\infty} \text{diam } \mathcal{E} = 0 \tag{14.35}
$$

Theorem 14.7

a) If cl $\mathcal E$ is the closure of a set $\mathcal E$ in a metric space $\mathcal X$ then

$$
\text{diam } \mathcal{E} = \text{diam cl}\mathcal{E} \tag{14.36}
$$

b) If \mathcal{K}_n is a sequence of compact sets in X such that $\mathcal{K}_n \supset \mathcal{K}_{n-1}$ $(n = 2, 3, ...)$ then the set $K := \bigcap_{n=1}^{\infty}$ $n=1$ \mathcal{K}_n consists exactly of one point.

Proof.

a) Since $\mathcal{E} \subseteq \text{cl}\mathcal{E}$ it follows that

$$
\text{diam}\mathcal{E} \leq \text{ diam cl}\mathcal{E} \tag{14.37}
$$

Fix $\varepsilon > 0$ and select $x, y \in \text{cl}\mathcal{E}$. By the definition (14.25) there are to points $x', y' \in \mathcal{E}$ such that both $d(x, x') < \varepsilon$ and $d(y, y') < \varepsilon$ that implies

$$
d(x,y) \le d(x,x') + d(x',y') + d(y',y) 2\varepsilon + d(x',y') \le 2\varepsilon + \text{diam}\mathcal{E}
$$

As the result, we have

diam cl $\mathcal{E} \leq 2\varepsilon + \text{diam}\mathcal{E}$

and since ε is arbitrary it follows that

$$
diam cl\mathcal{E} \leq diam\mathcal{E}
$$
\n(14.38)

The inequalities (14.37) and (14.38) give (14.36).

b) If K contains more then one point then diam $K > 0$. But for each *n* we have that $\mathcal{K}_n \supset \mathcal{K}$, so that diam $\mathcal{K}_n \supseteq \text{diam } \mathcal{K}$. This contradict that diam $\mathcal{K}_n \longrightarrow_{n \to \infty} 0$.

Theorem is proven. \blacksquare

The next theorem explains the importance of fundamental sequence in the analysis of metric spaces.

Theorem 14.8

- a) Every convergent sequence $\{x_n\}$ given in a metric space X is a Cauchy sequence.
- b) If X is a compact metric space and if $\{x_n\}$ is a Cauchy sequence in X then $\{x_n\}$ converges to some point in X.
- c) In \mathbb{R}^n a sequence converges if and only if it is a Cauchy sequence.

Usually, the claim c) is referred to as the **Cauchy criterion**.

Proof.

a) If ${x_n \to x}$ then for any $\varepsilon > 0$ there exists an integer n_ε such that $d(x_n, x) < \varepsilon$ for all $n \geq n_{\varepsilon}$. So, $d(x_n, x_m) \leq d(x_n, x) + d(x, x_m) < 2\varepsilon$ if $n, m \geq n_{\varepsilon}$. Thus $\{x_n\}$ is a Cauchy sequence.

b) Let $\{x_n\}$ be a Cauchy sequence and the set $\mathcal{E}_{n_{\varepsilon}}$ contains the points $x_{n_{\varepsilon}}, x_{n_{\varepsilon}+1}, x_{n_{\varepsilon}+2}, \ldots$. Then by Theorem (14.7) and in view of (14.35) and (14.36)

$$
\lim_{n_{\varepsilon}\to\infty} \text{diam cl}\mathcal{E}_{n_{\varepsilon}} = \lim_{n_{\varepsilon}\to\infty} \text{diam }\mathcal{E}_{n_{\varepsilon}} = 0 \tag{14.39}
$$

Being a closed subset of the compact space X each $cl\mathcal{E}_{n_{\epsilon}}$ is compact (see Proposition 14.4). And since $\mathcal{E}_n \supset \mathcal{E}_{n+1}$ then $\text{cl}\mathcal{E}_n \supset \text{cl}\mathcal{E}_{n+1}$. By Theorem 14.7 b), there is a unique point $x \in \mathcal{X}$ which lies in cl \mathcal{E}_n . The expression (14.39) means that for any $\varepsilon > 0$ there exists an integer n_{ε}

such that diam $\text{cl}\mathcal{E}_n < \varepsilon$ if $n \geq n_{\varepsilon}$. Since $x \in \text{cl}\mathcal{E}_n$ then $d(x, y) < \varepsilon$ for any $x \in \text{cl}\mathcal{E}_n$ that equivalent to the following: $d(x, x_n) < \varepsilon$ if $n \geq n_{\varepsilon}$. But this means that $x_n \to x$.

c) Let $\{x_n\}$ be a Cauchy sequence in \mathbb{R}^n and define $\mathcal{E}_{n_{\varepsilon}}$ like in the statement b) but with ${\bf x}_n \in \mathbb{R}^n$ instead of x_n . For some n_ε we have that diam $\mathcal{E}_{n_{\varepsilon}} < 1$. The range of $\{x_n\}$ is the union of \mathcal{E}_n and the finite set $\{x_1, x_2, ..., x_{n_{\epsilon}-1}\}$. Hence, $\{x_n\}$ is bounded and since every bounded sunset in \mathbb{R}^n has a compact closure in \mathbb{R}^n , the statement follows from the statement b).

Theorem is proven. ■

Definition 14.14 A metric space where each Cauchy sequence converges is said to be complete.

Example 14.4

- 1. By Theorem (14.8) it follows that all Euclidean spaces are complete.
- 2. The space of all rational numbers with the metric $d(x, y) =$ $|x-y|$ is not complete.
- 3. In \mathbb{R}^n any convergent sequence is bounded but not any bounded sequence obligatory converges.

There is a special case when bounded sequence obligatory converges. Next theorem specifies such sequences.

Theorem 14.9 (Weierstrass theorem) Any monotonic sequence $\{s_n\}$ of real numbers, namely, when

- a) $\{s_n\}$ is monotonically non-decreasing: $s_n \leq s_{n+1}$;
- b) $\{s_n\}$ is monotonically non-increasing: $s_n \geq s_{n+1}$;

converges if and only if it is bounded.

Proof. If $\{s_n\}$ converges it is bounded by Theorem (14.5) the claim 3. Suppose that and $\{s_n\}$ is bounded, namely, sup $s_n = s < \infty$. Then $s_n \leq s$ and for every $\varepsilon > 0$ there exists an integer n_{ε} such that $s - \varepsilon \leq s_n \leq s$ for otherwise $s - \varepsilon$ would be an upper bound for $\{s_n\}.$ Since $\{s_n\}$ increases and ε is arbitrary small this means $s_n \to s$. The case $s_n \geq s_{n+1}$ is considered analogously. Theorem is proven.

Upper and lower limits in R

Definition 14.15 Let $\{s_n\}$ be a sequence of real numbers in \mathbb{R} .

a) If for every real M there exists an integer n_M such that $s_n \geq M$ for all $n \geq n_M$ we then write

$$
s_n \to \infty \tag{14.40}
$$

b) If for every real M there exists an integer n_M such that $s_n \leq M$ for all $n \geq n_M$ we then write

$$
s_n \to -\infty \tag{14.41}
$$

c) Define the upper limit of a sequence $\{s_n\}$ as

$$
\limsup_{n \to \infty} s_n := \lim_{t \to \infty} \sup_{n \ge t} s_n \tag{14.42}
$$

which may be treated as a biggest limit of all possible subsequences.

d) Define the **lower limit** of a sequence $\{s_n\}$ as

$$
\overline{\liminf_{n \to \infty} s_n} := \overline{\lim_{t \to \infty} \inf_{n \ge t} s_n}
$$
\n(14.43)

which may be treated as a lowest limit of all possible subsequences.

The following theorem whose proof is quit trivial is often used in many practical problems.

Theorem 14.10 Let $\{s_n\}$ and $\{t_n\}$ be two sequences of real numbers in R. Then the following properties hold:

1.

$$
\overline{\liminf_{n \to \infty} s_n} \leq \overline{\limsup_{n \to \infty} s_n}
$$
\n(14.44)

2.

$$
\limsup_{n \to \infty} s_n = \infty \quad \text{if} \quad s_n \to \infty
$$
\n
$$
\liminf_{n \to \infty} s_n = -\infty \quad \text{if} \quad s_n \to -\infty
$$
\n(14.45)

3.

$$
\limsup_{n \to \infty} (s_n + t_n) \leq \limsup_{n \to \infty} s_n + \limsup_{n \to \infty} t_n
$$
\n(14.46)

$$
\mathcal{L}.
$$

$$
\left[\liminf_{n \to \infty} (s_n + t_n) \ge \liminf_{n \to \infty} s_n + \liminf_{n \to \infty} t_n\right] \tag{14.47}
$$

5. If $\lim_{n \to \infty} s_n = s$ then

$$
\left[\liminf_{n \to \infty} s_n = \liminf_{n \to \infty} s_n = s\right] \tag{14.48}
$$

6. If $s_n \leq t_n$ for all $n \geq M$ which is fixed then

$$
\limsup_{n \to \infty} s_n \leq \limsup_{n \to \infty} t_n
$$
\n
$$
\liminf_{n \to \infty} s_n \leq \liminf_{n \to \infty} t_n
$$
\n(14.49)

Example 14.5

1.

$$
\limsup_{n \to \infty} \sin\left(\frac{\pi}{2}n\right) = 1, \liminf_{n \to \infty} \sin\left(\frac{\pi}{2}n\right) = -1
$$

2.

$$
\limsup_{n \to \infty} \tan\left(\frac{\pi}{2}n\right) = \infty, \ \liminf_{n \to \infty} \tan\left(\frac{\pi}{2}n\right) = -\infty
$$

3. For
$$
s_n = \frac{(-1)^n}{1 + 1/n}
$$

lim sup $\max_{n \to \infty} s_n = 1$, $\liminf_{n \to \infty} s_n = -1$

14.2.5 Continuity and function limits in metric spaces

Continuity and limits of functions

Let X and Y be metric spaces and $\mathcal{E} \subset \mathcal{X}$, f maps \mathcal{E} into Y and $p \in \mathcal{X}$.

Definition 14.16

a) We write

$$
\lim_{x \to p} f(x) = q \tag{14.50}
$$

if there is a point $q \in \mathcal{Y}$ such that for every $\varepsilon > 0$ there exists $a \delta = \delta(\varepsilon, p) > 0$ for which $d_{\mathcal{Y}}(f(x), q) < \varepsilon$ for all $x \in \mathcal{E}$ for which $d_{\mathcal{X}}(x, p) < \delta$. The symbols $d_{\mathcal{Y}}$ and $d_{\mathcal{X}}$ are referred to as the distance in X and Y , respectively. Notice that f may be not defined at p since p may not belong to $\mathcal{E}.$

- **b)** If, in addition, $p \in \mathcal{E}$ and $d_{\mathcal{Y}}(f(x), f(p)) < \varepsilon$ for every $\varepsilon > 0$ and for all $x \in \mathcal{E}$ for which $d_{\mathcal{X}}(x, p) < \delta = \delta(\varepsilon)$ then f is said to be continuous at the point p .
- c) If f is continuous at every point of $\mathcal E$ then f is said to be **contin**uous on E.
- d) If for any $x, y \in \mathcal{E} \subset \mathcal{X}$

$$
d_{\mathcal{Y}}\left(f\left(x\right),f\left(y\right)\right) \le L_{f}d_{\mathcal{X}}\left(x,y\right), L_{f} < \infty \tag{14.51}
$$

then f is said to be **Lipschitz continuous on** \mathcal{E} .

Remark 14.3 If p is a limit point of $\mathcal E$ then f is continuous at the point p if and only if

$$
\lim_{x \to p} f(x) = f(p) \tag{14.52}
$$

The proof of this result follows directly from the definition above. The following properties related to continuity are evidently fulfilled.

Proposition 14.5

1. If for metric spaces $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ the following mappings are defined:

$$
f: \mathcal{E} \subset \mathcal{X} \to \mathcal{Y}, g: f(\mathcal{E}) \to \mathcal{Z}
$$

and

$$
h(x) := g(f(x)), x \in \mathcal{E}
$$

then h is continuous at a point $p \in \mathcal{E}$ if f is continuous at p and q is continuous at $f(p)$.

- 2. If $f: \mathcal{X} \to \mathbb{R}^n$ and $f(x) := (f_1(x), ..., f_n(x))$ then f is continu-If $f : \mathcal{X} \to \mathbb{R}^n$ and $f(x) := (f_1(x), ..., f_n(x))$ then f
ous if and only if all $f_i(x)$ $(i = \overline{1,n})$ are continuous.
- 3. If $f, g : \mathcal{X} \to \mathbb{R}^n$ are continuos mappings then $f + g$ and (f, g) are continuous too on X.
- 4. A mapping $f : \mathcal{X} \to \mathcal{Y}$ is continuous on X if and only if $f^{-1}(\mathcal{V})$ is open (closed) in X for every open (closed) set $V \subset Y$.

Continuity, compactness and connectedness

Theorem 14.11 If $f : \mathcal{X} \to \mathcal{Y}$ is a continuous mapping of a compact metric space X into a metric space Y then $f(\mathcal{X})$ is compact.

Proof. Let $\{\mathcal{V}_{\alpha}\}\$ be an open cover of $f(\mathcal{X})$. By continuity of f and in view of Proposition 14.5 it follows that each of the sets $f^{-1}(\mathcal{V}_{\alpha})$ is open. By the compactness of X there are finitely many indices $\alpha_1, ..., \alpha_n$ such that

$$
\mathcal{X} \subset \bigcup_{i=1}^{n} f^{-1} \left(\mathcal{V}_{\alpha_i} \right) \tag{14.53}
$$

Since $f(f^{-1}(\mathcal{E})) \subset \mathcal{E}$ for any $\mathcal{E} \subset \mathcal{Y}$ it follows that (14.53) implies that $f(\mathcal{X}) \subset \bigcup_{n=1}^{\infty}$ $\alpha=1$ \mathcal{V}_{α_i} . This completes the proof.

Corollary 14.2 If $f : \mathcal{X} \to \mathbb{R}^n$ is a continuous mapping of a compact metric space X into \mathbb{R}^n then $f(\mathcal{X})$ is closed and bounded, that is, it contains its all limit points and $||f(x)|| \leq M < \infty$ for any $x \in \mathcal{X}$.

Proof. It follows directly from Theorems 14.11 and 14.4. ■ The next theorem is particular important when f is real.

Theorem 14.12 (Weierstrass theorem) If $f: \mathcal{X} \to \mathbb{R}^n$ is a continuous mapping of a compact metric space $\mathcal X$ into $\mathbb R$ and

$$
M = \sup_{x \in \mathcal{X}} f(x), \ m = \inf_{x \in \mathcal{X}} f(x)
$$

then there exist points $x_M, x_m \in \mathcal{X}$ such that

$$
M = f(x_M), \ m = f(x_m)
$$

This means that f attains its maximum (at x_M) and its minimum (at (x_m) , that is,

$$
M = \sup_{x \in \mathcal{X}} f(x) = \max_{x \in \mathcal{X}} f(x), \, m = \inf_{x \in \mathcal{X}} f(x) = \min_{x \in \mathcal{X}} f(x)
$$

Proof. By Theorem 14.11 and its Corollary it follows that $f(\mathcal{X})$ is closed and bounded set (say, \mathcal{E}) of real numbers. So, if $M \in \mathcal{E}$ then $M \in \text{cl}\mathcal{E}$. Suppose $M \notin \mathcal{E}$. Then for any $\varepsilon > 0$ there is a point $y \in \mathcal{E}$ such that $M - \varepsilon < y < M$, for otherwise $(M - \varepsilon)$ would be an upper bound. Thus y is a limit point of \mathcal{E} . Hence, $y \in \text{cl}\mathcal{E}$ that proves the theorem. \blacksquare

The next theorem deals with the continuity property for inverse continuous one-to-one mappings.

Theorem 14.13 If $f : \mathcal{X} \to \mathcal{Y}$ is a continuous one-to-one mapping of a compact metric space X into a metric space Y then the inverse mapping $f^{-1}: \mathcal{Y} \to \mathcal{X}$ defined by

$$
f^{-1}(f(x)) = x \in \mathcal{X}
$$

is a continuous mapping too.

Proof. By Proposition 14.4, applied to f^{-1} instead of f, one can see that it is sufficient to prove that $f(V)$ is an open set of Y for any open set $V \subset \mathcal{X}$. Fixing a set V we may conclude that the complement V^c of V is closed in X and, hence, by Proposition 14.5 it is a compact. As the result, $f(V^c)$ is a compact subset of $\mathcal Y$ (14.11) and so, by Theorem 14.2, it is closed in $\mathcal Y$. Since f is one-to-one and onto, $f(\mathcal V)$ is the compliment of $f(\mathcal{V}^c)$ and hence, it is open. This completes the proof. \blacksquare

Uniform continuity

Definition 14.17 Let $f : \mathcal{X} \to \mathcal{Y}$ be a mapping of a space X into a metric space \mathcal{V} . A mapping f is said to be

a) uniformly continuous on X if for any $\varepsilon > 0$ there exists $\delta =$ $\delta(\varepsilon) > 0$ such that $d_{\mathcal{Y}}(f(x), f(x')) < \varepsilon$ for all $x, x' \in \mathcal{X}$ for which $d_{\mathcal{X}}(x, x') < \delta$.

b) uniformly Lipschitz continuous on a (x, z) -set $\mathcal E$ with respect to x, if there exists a positive constant $L_f < \infty$ such that

$$
d_{\mathcal{Y}}\left(f\left(x,z\right),f\left(x',z\right)\right)\leq L_{f}d_{\mathcal{X}}\left(x,x'\right)
$$

for all $x, x', z \in \mathcal{E}$.

Remark 14.4 The different between the concepts of **continuity** and uniform continuity concerns two aspects:

- a) uniform continuity is a property of a function on a set, whereas continuity is defined for a function in a single point;
- b) δ , participating in the definition (14.50) of continuity, is a function of ε and a point p, that is, $\delta = \delta(\varepsilon, p)$, whereas δ , participating in the definition (14.17) of simple continuity, is a function of ε only serving for all points of a set (space) X, that is, $\delta = \delta(\varepsilon)$.

Evidently that any uniformly continues function is continuous but not inverse. The next theorem shows when both concepts coincide.

Theorem 14.14 If $f : \mathcal{X} \to \mathcal{Y}$ is a continuous mapping of a compact metric space $\mathcal X$ into a metric space $\mathcal Y$ then f is uniformly continuous on $\mathcal{X}.$

Proof. Continuity means that for any point $p \in \mathcal{X}$ and any $\varepsilon > 0$ we can associate a number $\delta(\varepsilon, p)$ such that

$$
x \in \mathcal{X}, \ d_{\mathcal{X}}(x, p) < \delta(\varepsilon, p) \ \text{ implies } \ d_{\mathcal{Y}}(f(x), f(p)) < \varepsilon/2 \tag{14.54}
$$

Define the set

$$
\mathcal{J}(p) := \{ x \in \mathcal{X} : d_{\mathcal{X}}(x, p) < \delta(\varepsilon, p) / 2 \}
$$

Since $p \in \mathcal{J}(p)$ the collection of all sets $\mathcal{J}(p)$ is an open cover of X and by the compactness of X there are a finite set of points $p_1, ..., p_n$ such that

$$
\mathcal{X} \subset \mathcal{J}(p_1) \cup \cdots \cup \mathcal{J}(p_n) \tag{14.55}
$$

Put

$$
\tilde{\delta}(\varepsilon) := \frac{1}{2} \min \left\{ \delta(\varepsilon, p_1), ..., \delta(\varepsilon, p_n) \right\} > 0
$$

Now let $x \in \mathcal{X}$ satisfies the inequality $d_{\mathcal{X}}(x, p) < \delta(\varepsilon)$. By the compactness (namely, by (14.55)) there is an integer $m (1 \le m \le n)$ such that $p \in \mathcal{J}(p_m)$ that implies

$$
d_{\mathcal{X}}(x, p_m) < \frac{1}{2}\delta\left(\varepsilon, p_m\right)
$$

and, as the result,

$$
d_{\mathcal{X}}(x, p_m) \le d_{\mathcal{X}}(x, p) + d_{\mathcal{X}}(p, p_m) \le \tilde{\delta}(\varepsilon) + \frac{1}{2}\delta(\varepsilon, p_m) \le \delta(\varepsilon, p_m)
$$

Finally, by (14.54)

$$
d_{\mathcal{Y}}(f(x), f(p)) \leq d_{\mathcal{Y}}(f(x), f(p_m)) + d_{\mathcal{Y}}(f(p_m), f(p)) \leq \varepsilon
$$

that completes the proof. \blacksquare

Remark 14.5 The alternative proof of this theorem may be obtained in the following manner: assuming that f is not uniformly continuous we conclude that there exists $\varepsilon > 0$ and the sequences $\{x_n\}$, $\{p_n\}$ on X such that $d_X (x_n, p_n) \underset{n \to \infty}{\to} 0$ but $d_Y (f (x_n), f (p_n)) > \varepsilon$. The last is in a contradiction with Theorem 14.3.

Next examples shows that compactness is essential in the hypotheses of the previous theorems.

Example 14.6 If $\mathcal E$ is a non compact in $\mathbb R$ then

1. There is a continuous function on $\mathcal E$ which is not bounded, for example,

$$
f(x) = \frac{1}{x-1}, \ \mathcal{E} := \{x \in \mathbb{R} : |x| < 1\}
$$

Here, $\mathcal E$ is a non compact, $f(x)$ is continuous on $\mathcal E$, but evidently unbounded. It is easy to check that it is not uniformly continuous.

2. There exists a continuous and bounded function on $\mathcal E$ which has no maximum, for example,

$$
f(x) = \frac{1}{1 + (x - 1)^2}, \ \mathcal{E} := \{x \in \mathbb{R} : |x| < 1\}
$$

Evidently that

sup $x \in \overline{\mathcal{E}}$ $f (x) = 1$ whereas $\frac{1}{2} \le f(x) < 1$ and, hence, has no maximum on \mathcal{E} .

Continuity of a family of functions: equicontinuity

Definition 14.18 A family **F** of functions $f(x)$ defined on some xset $\mathcal E$ is said to be **equicontinuous** if for any $\varepsilon > 0$ there exists a $\delta = \delta(\varepsilon)$, the same for all class **F**, such that $d_{\mathcal{X}}(x, y) < \delta$ implies $d_{\mathcal{Y}}(f(x), f(y)) < \varepsilon$ for all $x, y \in \mathcal{E}$ and any $f \in \mathbf{F}$.

The most frequently encountered equicontinuous families \bf{F} occur when $f \in \mathbf{F}$ are uniformly Lipschitz continuous on $\mathcal{X} \subseteq \mathbb{R}^n$ and there exists a $L_f > 0$ which is a Lipschitz constant for all $f \in \mathbf{F}$. In this case $\delta = \delta(\varepsilon)$ can be chosen as $\delta = \varepsilon/L_f$.

The following claim can be easily proven.

Claim 14.5 If a sequence of continuous functions on a compact set $X \subseteq \mathbb{R}^n$ is uniformly convergent on X, then it is uniformly bounded and equicontinuous.

The next two assertions usually referred to as the Ascoli-Arzelà's theorems(see the reference in (Hartman 2002)). They will be used below for the analysis of Ordinary Differential Equations.

Theorem 14.15 (on the propagation, Ascoli-Arzelà 1883-1895)

Let on a compact x-set of ${\mathcal{E}}$, the sequence of functions ${f_n(x)}_{n=1,2,...}$ be equicontinuous and convergent on a dense subset of \mathcal{E} . Then there exists a subsequence $\{f_{n_k}(x)\}_{k=1,2,\dots}$ which is uniformly convergent on $\mathcal{E}.$

Another version of the same fact looks as follows.

Theorem 14.16 (on the selection, Ascoli-Arzelà 1883-1895) Let on a compact x-set of $\mathcal{E} \subset \mathbb{R}^n$, the sequence of functions ${f_n(x)}_{n=1,2,...}$ be uniformly bounded and equicontinuous. Then there exists a subsequence $\{f_{n_k}(x)\}_{k=1,2,...}$ which is uniformly convergent on E.

Proof. Let us consider the set of all rational numbers $\mathbf{R} \subseteq$ \mathcal{E} . Since **R** is countable, all of its elements can be designated by numbers, i.e., $\mathbf{R} = \{r_i\}$ (j = 1, ...). The numerical vector-sequence ${f_n(r_1)}_{n=1,2,...}$ is norm-bounded, say, $||f_n(r_1)|| \leq M$. Hence, we can choose a convergent sequence $\{f_{n_k}(r_2)\}_{k=1,2,...}$ which is also bounded by the same M . Continuing this process we obtain a subsequence ${f_p(r_q)}_{p=1,2,...}$ that converges in a point $r_q, q = 1,2,...$ Let $f_p :=$ $f_p(r_p)$. Show that the sequence $\{f_p\}$ is uniformly convergent on E to a continuous function $f \in C(\mathcal{E})$. In fact, $\{f_p\}$ converges in any point of \bf{R} by the construction. To establish it convergence in any point of \mathcal{E} , it is sufficient to to show that for any fixed $x \in \mathcal{E}$ the sequence ${f_p(x)}$ converges in itself. Since ${f_p(x)}$ is equicontinuous, for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon)$ such that for $||x - x'|| < \delta$ and $x, x' \in \mathcal{E}$ there is $|| f_p(x) - f_p(x') || < \varepsilon$. Choose r_j such that $||x - r_j|| < \delta$ that implies $||f_p(x) - f_p(r_i)|| < \varepsilon$. But the sequence $\{f_p(r_i)\}\$ converges in itself. Hence, there is a number p_0 such that $\|f_p(x) - f_{p'}(x')\| < \varepsilon$ whenever $p, p' > p_0$. So,

$$
|| f_p(x) - f_{p'}(x') || \le || f_p(x) - f_p(r_j) || +
$$

$$
|| f_p(r_j) - f_{p'}(r_j) || + || f_{p'}(r_j) - f_{p'}(x') || \le 3\varepsilon
$$

Thus ${f_p(x)}$ converges at each $x \in \mathcal{E}$. It remains to prove that ${f_n(x)}$ converges uniformly on $\mathcal E$ and, therefore, its limit f is from $C(\mathcal{E})$. Again, by the assumption on equicontinuity, one can cover the set $\mathcal E$ with the finite δ -set containing, say, l subsets. In each of them select a rational numbers, say, $r_1, ..., r_l$. By the convergence of $\{f_p(x)\}\$ there exists p_0 such that $|| f_p(r_j) - f_{p'}(r_j) || < \varepsilon$ whenever $p, p' > p_0$, so that

$$
|| f_p(x) - f_{p'}(x)|| \le || f_p(x) - f_p(r_j)|| +
$$

$$
|| f_p(r_j) - f_{p'}(r_j)|| + || f_{p'}(r_j) - f_{p'}(x)|| \le 3\varepsilon
$$

where j is selected in such a way that r_i belongs to the same δ -subset as x. Taking $p' \to \infty$, this inequality implies $|| f_p(x) - f(x) || \leq 3\varepsilon$ for all x from the considered δ -subset. but this exactly means the uniform converges of $\{f_p(x)\}\$. Theorem is proven.

Connectedness

The definition of the connectedness of a set $\mathcal E$ has been given in Definition 14.7. Here we will discuss its relation with the continuity property of a function f .

Lemma 14.2 If $f : \mathcal{X} \to \mathcal{Y}$ is a continuous mapping of a metric space X into a metric space Y, and if $\mathcal E$ is a connected subset of X, then $f(\mathcal{E})$ is connected.

Proof. On the contrary, assume that $f(\mathcal{E}) = \mathcal{A} \cup \mathcal{B}$ with non empty sets $A, B \subset \mathcal{Y}$ such that $A \cap B = \emptyset$. Put $\mathcal{G} = \mathcal{E} \cap f^{-1}(A)$ and $\mathcal{H} = \mathcal{E} \cap f^{-1}(\mathcal{B})$. Then $\mathcal{E} = \mathcal{G} \cup \mathcal{H}$ and both \mathcal{G} and \mathcal{H} are non empty. Since $A \subset clA$ it follows that $\mathcal{G} \subset f^{-1}(clA)$ and $f(cl\mathcal{G}) \subset clA$. Taking into account that $f(\mathcal{H}) = \mathcal{B}$ and $c \mathcal{A} \cap \mathcal{B} = \emptyset$ we may conclude that $\mathcal{G} \cap \mathcal{H} = \emptyset$. By the same argument we conclude that $\mathcal{G} \cap cl\mathcal{H} = \emptyset$. Thus, $\mathcal G$ and $\mathcal H$ are separated that is impossible if $\mathcal E$ is connected. Lemma is proven. \blacksquare

This theorem serves as an instrument to state the important result in R which is known as the Bolzano theorem which concerns a global property of real-valued functions continuous on a compact interval $[a, b] \in \mathbb{R}$: if $f(a) < 0$ and $f(b) > 0$ then the graph of the function $f(x)$ must cross the x -axis somewhere in between. But this theorem as well as other results, concerning the analysis of functions given on \mathbb{R}^n , will be considered in details below in the chapter named "Elements" of Real Analyses".

Homeomorphisms

Definition 14.19 Let $f : \mathcal{S} \to \mathcal{T}$ be a function mapping points from one metric space (S, d_S) to another $(\mathcal{T}, d_{\mathcal{T}})$ such that it is one-to-one mapping or, in other words, $f^{-1}: T \to S$ exists. If additionally f is continuous on S and f^{-1} on T then such mapping f is called a topological mapping or homeomorphism, and the spaces (S, d_S) and $(f(\mathcal{S}), d_{\mathcal{T}})$ are said to be **homeomorphic**.

It is clear from this definition that if f is homeomorphism then f^{-1} is homeomorphism too. The important particular case of a homeomorphism is, the so-called, an isometry, i.e., it is a one-to one continuous mapping which preserves the metric, namely, which for all $x, x' \in S$ keeps the identity

$$
d_{\mathcal{T}}(f(x), f(x')) = d_{\mathcal{S}}(x, x')
$$
 (14.56)

14.2.6 The contraction principle and a fixed point theorem

Definition 14.20 Let X be a metric space with a metric d. If φ maps X into X and if there is a number $c \in [0, 1)$ such that

$$
d(\varphi(x), \varphi(x')) \le cd(x, x')
$$
 (14.57)

for all $x, x' \in \mathcal{X}$, then φ is said to be a **contraction** of \mathcal{X} into \mathcal{X} .

Theorem 14.17 (the fixed point theorem) If X is a complete metric space and if φ is a contraction of X into X, then there exists one and only one point $x \in \mathcal{X}$ such that

$$
\varphi(x) = x \tag{14.58}
$$

Proof. Pick $x_0 \in \mathcal{X}$ arbitrarily and define the sequence $\{x_n\}$ recursively by setting $x_{n+1} = \varphi(x_n)$, $n = 0, 1, \dots$ Then, since φ is a contraction, we have

$$
d(x_{n+1}, x_n) = d(\varphi(x_n), \varphi(x_{n-1})) \leq \\ cd(x_n, x_{n-1}) \leq \cdots \leq c^n d(x_1, x_0)
$$

Taking $m > n$ and in view of the triangle inequality, it follows

$$
d(x_m, x_n) \leq \sum_{i=n+1}^m d(x_i, x_{i-1}) \leq (c^{m-1} + \dots + c^n) d(x_1, x_0) \leq c^n (c^{m-1-n} + \dots + 1) d(x_1, x_0) \leq c^n (1-c)^{-1} d(x_1, x_0)
$$

Thus $\{x_n\}$ is a Cauchy sequence, and since X is a complete metric space, it should converge, that is, there exists $\lim_{n\to\infty} x_n := x$. And, since φ is a contraction, it is continuous (in fact, uniformly continuous). Therefore $\varphi(x) = \lim_{n \to \infty} \varphi(x_n) = \lim_{n \to \infty} x_n = x$. The uniqueness follows from the following consideration. Assume that there exists another point $y \in \mathcal{X}$ such that $\varphi(y) = y$. Then by (14.57) it follows $d(x, y)$ $\leq cd(\varphi(x), \varphi(y)) = cd(x, y)$ which may only happen if $d(x, y) = 0$ that proves the theorem. \blacksquare

14.3 Resume

The properties of sets which remain invariant under every topological mapping is usually called the topological properties. Thus properties of being open, closed, or compact are topological properties.