
Chapter 14

Sets, Functions and Metric
Spaces

14.1 Functions and sets

14.1.1 The function concept

Definition 14.1 Let us consider two sets A and B whose elements
may be any objects whatsoever. Suppose that with each element A
there is associated, in some manner, an element B which we
denote by = ( ).

1. Then is said to be a function from A to B or a mapping of
A into B.

2. If E A then (E) is defined to be the set of all elements ( )
E and it is called the image of E under . The notations

(A) is called the range of (evidently, that (A) B). If
(A) = B we say that maps A onto B.

3. For D B the notation 1 (D) denotes the set of all A
such that ( ) B. We call 1 (D) the inverse image of
D under . So, if D then 1 ( ) is the set of all A
such that ( ) = . If for each B the set 1 ( ) consists
of at most one element of A then is said to be one-to-one
mapping of A to B.
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The one-to-one mapping means that ( 1) 6= ( 2) if 1 6= 2

for any 1 2 A. We often will use the following notation for the
mapping :

: A B (14.1)

If, in particular, A = R and B = R we will write

: R R (14.2)

Definition 14.2 If for two sets A and B there exists an one-to-one
mapping then we say that these sets are equivalent and we write

A B (14.3)

Claim 14.1 The relation of equivalency ( ) clearly has the following
properties:

a) it is reflexive, i.e., A A;

b) it is symmetric, i.e., if A B then B A;

c) it is transitive, i.e., if A B and B C then A C.

14.1.2 Finite, countable and uncountable sets

Denote by J the set of positive numbers 1 2 , that is,

J = {1 2 }

and by J we will denote the set of all positive numbers, namely,

J = {1 2 }

Definition 14.3 For any A we say:

1. A is finite if
A J

for some finite (the empty set , which does not contain any
element, is also considered as finite);
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2. A is countable (enumerable or denumerable) if

A J

3. A is uncountable if it is neither finite nor countable;

4. A is at most countable if it is both finite or countable.

Evidently that if A is infinite then it is equivalent to one of its
subsets. Also it is clear that any infinite subset of a countable set is
countable.

Definition 14.4 By a sequence we mean a function defined on
the set J of all positive integers. If = ( ) it is customarily to
denote the corresponding sequence by

{ } := { 1 2 }

(sometimes, this sequence starts with 0 but not with 1).

Claim 14.2

1. The set N of all integers is countable;

2. The set Q of all rational numbers is countable;

3. The set R of all real numbers is uncountable.

14.1.3 Algebra of sets

Definition 14.5 Let A and be sets. Suppose that with each element
A there is associated a subset E . Then

a) The union of the sets E is defined to be the set S such that
if and only if E at least for one A. It will be

denoted by
S :=

S
E (14.4)

If A consists of all integers (1 2 ), that means, A = J , we
will use the notation

S :=
S
=1

E (14.5)
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and if A consists of all integers (1 2 ), that means, A = J ,
we will use the notation

S :=
S
=1

E (14.6)

b) The intersection of the sets E is defined as the set P such that
P if and only if E for every A It will be denoted

by
S :=

T
A
E (14.7)

If A consists of all integers (1 2 ), that means, A = J , we
will use the notation

S :=
T
=1

E (14.8)

and if A consists of all integers (1 2 ), that means, A = J ,
we will use the notation

S :=
T
=1

E (14.9)

If for two sets A and B we have A B = , we say that these
two sets are disjoint.

c) The complement of A relative to B, denoted by B A, is de-
fined to be the set

B A := { : B, but A} (14.10)

The sets A B, A B and B A are illustrated at Fig.14.1.
Using these graphic illustrations it is possible easily to prove the

following set-theoretical identities for union and intersection.

Proposition 14.1

1.

A (B C) = (A B) C, A (B C) = (A B) C
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Figure 14.1: Two sets relations.

2.
A (B C) = (A B) (A C)

3.
(A B) (A C) = A (B C)

4.

(A B) (B C) (C A)=(A B) (A C) (B C)

5.
A (B C) = (A B) (A C)

6.
(A C) (B C) = (A B) C

7.
(A B) B = A

if and only if B A.

8.
A A B, A B A
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9.
A = A, A =

10.
A B = B, A B = A

if A B.

The next relations generalize the previous unions and intersections
to arbitrary ones.

Proposition 14.2

1. Let : S T be a function and A B any any subsets of .
Then

(A B) = (A) (B)

2. For any Y T define 1 (Y) as the largest subset of which
maps into . Then

a)
X 1 ( (X ))

b)
( 1 (Y)) Y

and
( 1 (Y)) = Y

if and only if T = (S).
c)

1 (Y1 Y2) = 1 (Y1) 1 (Y2)

d)
1 (Y1 Y2) = 1 (Y1) 1 (Y2)

e)
1 (T Y) = S 1 (Y)

and for subsets B A S it follows that

(A B) = (A) (B)
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14.2 Metric spaces

14.2.1 Metric definition and examples of metrics

Definition 14.6 A set X , whose elements we shall call points, is said
to be a metric space if with any two points and of X there is
associated a real number ( ), called a distance between and ,
such that

a)
( ) 0 if 6=

( ) = 0
(14.11)

b)
( ) = ( ) (14.12)

c) for any X the following "triangle inequality" holds:

( ) ( ) + ( ) (14.13)

Any function with these properties is called a distance function
or a metric.

Example 14.1 The following functions are metrics:

1. For any from the Euclidian space R

a) the Euclidian metric:

( ) = k k (14.14)

b) the discrete metric:

( ) =

½
0 if =
1 if 6= (14.15)

c) the weighted metric:

( ) = k k :=
p
( )| ( )

= | 0
(14.16)
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d) the module metric:

( ) =
P
=1

| | (14.17)

e) the Chebyshev’s metric:

( ) = max {| 1 1| | |} (14.18)

f) the Prokhorov’s metric:

( ) =
k k

1 + k k [0 1) (14.19)

2. For any 1and 2 of the complex plane C

( 1 2) = | 1 2| =q
(Re ( 1 2))

2 + (Im ( 1 2))
2 (14.20)

14.2.2 Set structures

Let X be a metric space. All points and sets mentioned below will be
understood to be elements and subsets of X .

Definition 14.7

a) A neighborhood of a point is a set N ( ) consisting of all
points such that ( ) where the number is called the
radius of N ( ), that is,

N ( ) := { X : ( ) } (14.21)

b) A point X is a limit point of the set E X if every
neighborhood of contains a point 6= such that E.

c) If E and is not a limit point of then is called an isolated
point of E.

d) E X is closed if every limit of E is a point of E.
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e) A point E is an interior point of E if there is a neighbor-
hood of N ( ) of such that N ( ) E.

f) E is open if every point of E is an interior point of E.

g) The complement E of E is the set of all points X such
that E.

h) E is bounded if there exists a real number and a point E
such that ( ) for all E.

i) E is dense in X if every point X is a limit point of E, or a
point of E, or both.

j) E is connected in X if it is not a union of two nonempty sepa-
rated sets, that is, E can not be represented as E = A B where
A 6= , B 6= and A B = .

Example 14.2 The set ( ) defined as

:= { X ( ) }

is an open set but the set ( ) defined as

( ) := { X ( ) }

is closed.

The following claims seem to be evident and, that’s why, they are
given without proofs.

Claim 14.3

1. Every neighborhood N ( ) E is an open set.

2. If is a limit point of E then every neighborhood N ( ) E
contains infinitely many points of E.

3. A finite point set has no limit points.

Let us prove the following lemma concerning complement sets.
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Lemma 14.1 Let {E } be a collection (finite or infinite) of sets E
X . Then μS

E
¶
=
T
E (14.22)

Proof. If
μS

E
¶

then, evidently,
S
E and, hence,

E for any . This means that
T
E . Thus,

Ã[
E
! \

E (14.23)

Conversely, if
T
E then E for every and, hence,

S
E .

So,
μS

E
¶
that implies

\
E

Ã[
E
!

(14.24)

Combining (14.23) and (14.24) gives (14.22). Lemma is proven.
This lemma provides the following corollaries.

Corollary 14.1

a) A set E is open if and only if its complement E is closed.

b) A set E is closed if and only if its complement E is open.

c) For any collection {E } of open sets E the set
S
E is open.

d) For any collection {E } of closed sets E the set
T
E is closed.

e) For any finite collection {E1 E } of open sets E the set
T
E

is open too.

f) For any finite collection {E1 E } of closed sets E the set
S
E

is closed too.
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Definition 14.8 Let X be a metric space and E X . Denote by E 0
the set of all limit points of E. Then the set clE defined as

clE := E E 0 (14.25)

is called the closure or E.

The next properties seem to be logical consequences of this defin-
ition.

Proposition 14.3 If X be a metric space and E X , then

a) clE is closed;

b) E = clE if and only if E is closed;

c) clE P for every closed set P X such that E P;

d) If is a nonempty set of real numbers which is bounded above,
i.e., 6= E R and := sup E . Then clE and, hence,

E if E is closed.

Proof.
a) If X and clE then is neither a point of E nor a limit

point of E . Hence has a neighborhood which does not intersect E .
Therefore the complement E of E is an open set. So, clE is closed.
b) If E = clE then by a) it follows that E is closed. If E is closed

then for E 0, defined in (14.8), we have that E 0 E . Hence, E = clE .
c) P is closed and P E (defined in (14.8)) then P P 0 and,

hence, P E 0. Thus P clE .
d) If E then clE . Assume E . Then for any 0 there

exists a point E such that , for otherwise ( )
would be an upper bound of E that contradicts to the supposition
sup E = . Thus is a limit point of E . Hence, clE .
The proposition is proven.

Definition 14.9 Let E be a set of a metric space X . A point E
is called a boundary point of E if any neighborhood N ( ) of this
point contains at least one point of E and at least one point of X E.
The set of all boundary points of E is called the boundary of the set
E and is denoted by E.
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It is not di cult to verify that

E = clE cl(X E) (14.26)

Denoting by
intE := E E (14.27)

the set of all internal points of the set E , it is easily verify that

intE = X cl (X E)
int (X E) = X clE
int (intE) = intE

If clE clD = then (E D) = E D
(14.28)

14.2.3 Compact sets

Definition 14.10

1. By an open cover of a set E in a metric space X we mean a
collection {G } of open subsets of X such that

E
S
G (14.29)

2. A subset K of a metric space X is said to be compact if every
open cover of K contains a finite subcover, more exactly, there
are a finite number of indices 1 such that

E G 1 · · · G (14.30)

Remark 14.1 Evidently that every finite set is compact.

Theorem 14.1 A set K Y X is a compact relative to X if and
only if K is a compact relative to Y.

Proof. Necessity. Suppose K is a compact relative to X . Hence,
by the definition (14.30) there exists its finite subcover such that

K G 1 · · · G (14.31)
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where G is an open set with respect to X . On the other hand
K

S
V where {V } is a collection of sets open with respect to Y.

But any open set V can be represented as V = Y G . So, (14.31)
implies

K V 1 · · · V (14.32)

Su ciency. Conversely, if K is a compact relative to Y then there
exists a finite collection {V } of open sets in Y such that (14.32)
holds. Putting V = Y G for a special choice of indices 1 it
follows that V G that implies (14.31). Theorem is proven.

Theorem 14.2 Compact sets of metric spaces are closed.

Proof. Suppose K is a compact subset of a metric space X . Let
X but K and K. Consider the neighborhoods N ( )

N ( ) of these points with
1

2
( ). Since K is a compact there

are finitely many points 1 such that

K N ( 1) · · · N ( ) = N

If V = N 1 ( ) · · · N ( ), then evidently V is a neighborhood of
which does not intersect N and, hence, V K . So, is an interior

point of K . Theorem is proven.
The following two propositions seem to be evident.

Proposition 14.4

1. Closed subsets of compact sets are compacts too.

2. If F is closed and K is compact then F K is compact.

Theorem 14.3 If E is an infinite subset of a compact set K then E
has a limit point in K.

Proof. If no point of K were a limit point of E then K would
have a neighborhood N ( ) which contains at most one point of E
(namely, if E). It is clear that no finite subcollection {N ( )}
can cover E . The same is true of K since E K. But this contradicts
the compactness of K. Theorem is proven.

The next theorem explains the compactness property especially in
R and is often applied in a control theory analysis.
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Theorem 14.4 If a set E R then the following three properties
are equivalent:

a) E is closed and bounded.

b) E is compact.

c) Every infinite subset of E has a limit point in E.

Proof. It is the consequence of all previous theorems and proposi-
tions and stay for readers consideration. The details of the proof can
be found in Chapter 2 of (Rudin 1976).

Remark 14.2 Notice that properties b) and c) are equivalent in any
metric space, but a) not.

14.2.4 Convergent sequences in metric spaces

Convergence

Definition 14.11 A sequence { } in a metric space X is said to
converge if there is a point X for which for any 0 there
exists an integer such that implies that ( ) Here
( ) is the metric (distance) in X . In this case we say that { }
converges to , or that is a limit of { }, and we write

lim = or (14.33)

If { } does not converge, it is usually said to diverge.

Example 14.3 The sequence {1 } converge to 0 in R but fails to
converge in R+ := { R | 0}.

Theorem 14.5 Let { } be a sequence in a metric space X .

1. { } converges to X if and only if every neighborhood N ( )
of contains all but (excluding) finitely many of the terms of
{ }.
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2. If 0 00 X and

0 and 00

then
0 = 00

3. If { } converges then { } is bounded.

4. If E X and is a limit point of E then there is a sequence
{ } in E such that = lim .

Proof.

1. a) Necessity. Suppose and let N ( ) (for some 0)

be a neighborhood of . The conditions ( ) , X
imply N ( ). Corresponding to this there exists a number
such that for any it follows that ( ) . Thus,
N ( ). So, all are bounded.

b) Su ciency. Conversely, suppose every neighborhood of
contains all but finitely many of the terms of { }. Fixing 0
denoting by N ( ) the set of all X such that ( ) .
By the assumption there exists such that for any it
follows that N ( ). Thus ( ) if and,
hence, .

2. For the given 0 there exist integers 0 and 00 such that 0

implies ( 0) 2 and 00 implies ( 00) 2. So,
for max { 0 00} it follows ( 0 00) ( 0 )+ ( 00)
. Taking small enough we conclude that ( 0 00) = 0.

3. Suppose Then, evidently there exists an integer 0

such that for all 0 we have that ( ) 1. Define
:= max {1 ( 1 ) ( 0 )}. Then ( ) for all
= 1 2 .

4. For any integer = 1 2 . there exists a point E such
that ( ) 1 . For any given 0 define such that

1. Then for one has ( ) 1 that
means that .
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This completes the proof.

Subsequences

Definition 14.12 Given a sequence { } let us consider a sequence
{ } of positive integers satisfying 1 2 · · ·. Then the sequence
{ } is called a subsequence of { }.

Claim 14.4 If a sequence { } converges to then any subsequence
{ }of { } converges to the same limit point .

Proof. This result can be easily proven by contradiction. Indeed,
assuming that two di erent subsequences { } and

© ª
have dif-

ferent limit points 0 and 00, then it follows that there exists 0
( 0 00) and a number such that for all we shall have:¡ ¢

that is in the contradiction with the assumption that
{ } converges.

Theorem 14.6

a) If { } is a sequence in a compact metric space X then it obligatory
contains some subsequence { } convergent to a point of X .

b) Any bounded sequence in R contains a convergent subsequent.

Proof.
a) Let E be the range of { }. If { } converges then the desired

subsequence is this sequence itself. Suppose that { } diverges. If E is
finite then obligatory there is a point E and numbers 1 2 ···
such that 1 = 2 = · · · = . The subsequence { } so obtained
converges evidently to . If E is infinite then by Theorem (14.3) E
has a limit point X . Choose 1 so that ( 1 ) 1, and, hence,
there are integer 1 such that ( ) 1 . This means that

converges to .
b) This follows from a) since Theorem (14.4) implies that every

bounded subset of R lies in a compact sunset of R .
Theorem is proven.
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Cauchy sequences

Definition 14.13 A sequence { } in a metric space X is said to be
a Cauchy (fundamental) sequence if for every 0 there is an
integer such that ( ) if both and .

Defining the diameter of E as

diam E := sup
E
( ) (14.34)

one may conclude that if E consists of the points { +1 } then
{ } is a Cauchy sequence if and only if

lim diam E = 0 (14.35)

Theorem 14.7

a) If clE is the closure of a set E in a metric space X then

diam E = diam clE (14.36)

b) If K is a sequence of compact sets in X such that K K 1

( = 2 3 ) then the set K :=
\
=1

K consists exactly of one

point.

Proof.

a) Since E clE it follows that

diamE diam clE (14.37)

Fix 0 and select clE . By the definition (14.25) there are
to points 0 0 E such that both ( 0) and ( 0) that
implies

( ) ( 0) + ( 0 0) + ( 0 )
2 + ( 0 0) 2 + diamE

As the result, we have

diam clE 2 + diamE
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and since is arbitrary it follows that

diam clE diamE (14.38)

The inequalities (14.37) and (14.38) give (14.36).

b) If K contains more then one point then diam K 0. But for
each we have that K K, so that diam K diam K. This
contradict that diam K 0.

Theorem is proven.

The next theorem explains the importance of fundamental se-
quence in the analysis of metric spaces.

Theorem 14.8

a) Every convergent sequence { } given in a metric space X is a
Cauchy sequence.

b) If X is a compact metric space and if { } is a Cauchy sequence
in X then { } converges to some point in X .

c) In R a sequence converges if and only if it is a Cauchy sequence.

Usually, the claim c) is referred to as the Cauchy criterion.

Proof.
a) If then for any 0 there exists an integer such that

( ) for all . So, ( ) ( ) + ( ) 2
if . Thus { } is a Cauchy sequence.
b) Let { } be a Cauchy sequence and the set E contains the

points +1 +2 . Then by Theorem (14.7) and in view of
(14.35) and (14.36)

lim diam clE = lim diam E = 0 (14.39)

Being a closed subset of the compact space X each clE is compact
(see Proposition 14.4). And since E E +1 then clE clE +1. By
Theorem 14.7 b), there is a unique point X which lies in clE . The
expression (14.39) means that for any 0 there exists an integer
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such that diam clE if . Since clE then ( ) for
any clE that equivalent to the following: ( ) if .
But this means that .
c) Let { } be a Cauchy sequence in R and define E like in the

statement b) but with x R instead of . For some we have
that diam E 1. The range of {x } is the union of E and the
finite set {x1 x2 x 1}. Hence, {x } is bounded and since every
bounded sunset in R has a compact closure in R , the statement
follows from the statement b).
Theorem is proven.

Definition 14.14 A metric space where each Cauchy sequence con-
verges is said to be complete.

Example 14.4

1. By Theorem (14.8) it follows that all Euclidean spaces are com-
plete.

2. The space of all rational numbers with the metric ( ) =
| | is not complete.

3. In R any convergent sequence is bounded but not any bounded
sequence obligatory converges.

There is a special case when bounded sequence obligatory con-
verges. Next theorem specifies such sequences.

Theorem 14.9 (Weierstrass theorem) Any monotonic
sequence { } of real numbers, namely, when

a) { } is monotonically non-decreasing: +1;

b) { } is monotonically non-increasing: +1;

converges if and only if it is bounded.

Proof. If { } converges it is bounded by Theorem (14.5) the
claim 3. Suppose that and { } is bounded, namely, sup = .
Then and for every 0 there exists an integer such that

for otherwise would be an upper bound for { }.
Since { } increases and is arbitrary small this means . The
case +1 is considered analogously. Theorem is proven.
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Upper and lower limits in R

Definition 14.15 Let { } be a sequence of real numbers in R.

a) If for every real there exists an integer such that
for all we then write

(14.40)

b) If for every real there exists an integer such that
for all we then write

(14.41)

c) Define the upper limit of a sequence { } as

lim sup := lim sup (14.42)

which may be treated as a biggest limit of all possible subse-
quences.

d) Define the lower limit of a sequence { } as

lim inf := lim inf (14.43)

which may be treated as a lowest limit of all possible subse-
quences.

The following theorem whose proof is quit trivial is often used in
many practical problems.

Theorem 14.10 Let { } and { } be two sequences of real numbers
in R. Then the following properties hold:

1.
lim inf lim sup (14.44)

2.
lim sup = if

lim inf = if
(14.45)
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3.
lim sup ( + ) lim sup + lim sup (14.46)

4.
lim inf ( + ) lim inf + lim inf (14.47)

5. If lim = then

lim inf = lim inf = (14.48)

6. If for all which is fixed then

lim sup lim sup

lim inf lim inf
(14.49)

Example 14.5

1.
lim sup sin

³
2

´
= 1, lim inf sin

³
2

´
= 1

2.
lim sup tan

³
2

´
= , lim inf tan

³
2

´
=

3. For =
( 1)

1 + 1

lim sup = 1 lim inf = 1

14.2.5 Continuity and function limits in metric
spaces

Continuity and limits of functions

Let X and Y be metric spaces and E X , maps E into Y and
X .
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Definition 14.16

a) We write
lim ( ) = (14.50)

if there is a point Y such that for every 0 there exists
a = ( ) 0 for which Y ( ( ) ) for all E for
which X ( ) . The symbols Y and X are referred to as
the distance in X and Y, respectively. Notice that may be not
defined at since may not belong to E.

b) If, in addition, E and Y ( ( ) ( )) for every 0 and
for all E for which X ( ) = ( ) then is said to be
continuous at the point .

c) If is continuous at every point of E then is said to be contin-
uous on E.

d) If for any E X

Y ( ( ) ( )) X ( ) (14.51)

then is said to be Lipschitz continuous on E.

Remark 14.3 If is a limit point of E then is continuous at the
point if and only if

lim ( ) = ( ) (14.52)

The proof of this result follows directly from the definition above.
The following properties related to continuity are evidently ful-

filled.

Proposition 14.5

1. If for metric spaces X Y Z the following mappings are defined:

: E X Y, : (E) Z

and
( ) := ( ( )) , E

then is continuous at a point E if is continuous at and
is continuous at ( ).
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2. If : X R and ( ) := ( 1 ( ) ( )) then is continu-
ous if and only if all ( )

¡
= 1

¢
are continuous.

3. If : X R are continuos mappings then + and ( )
are continuous too on X .

4. A mapping : X Y is continuous on X if and only if 1 (V)
is open (closed) in X for every open (closed) set V Y.

Continuity, compactness and connectedness

Theorem 14.11 If : X Y is a continuous mapping of a compact
metric space X into a metric space Y then (X ) is compact.

Proof. Let {V } be an open cover of (X ). By continuity of
and in view of Proposition 14.5 it follows that each of the sets
1 (V ) is open. By the compactness of X there are finitely many

indices 1 such that

X
[
=1

1 (V ) (14.53)

Since ( 1 (E)) E for any E Y it follows that (14.53) implies

that (X )
[
=1

V . This completes the proof.

Corollary 14.2 If : X R is a continuous mapping of a compact
metric space X into R then (X ) is closed and bounded, that is, it
contains its all limit points and k ( )k for any X .

Proof. It follows directly from Theorems 14.11 and 14.4.
The next theorem is particular important when is real.

Theorem 14.12 (Weierstrass theorem) If : X R is a con-
tinuous mapping of a compact metric space X into R and

= sup
X

( ) = inf
X
( )

then there exist points X such that

= ( ) = ( )
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This means that attains its maximum (at ) and its minimum (at
), that is,

= sup
X

( ) = max
X

( ) = inf
X
( ) = min

X
( )

Proof. By Theorem 14.11 and its Corollary it follows that (X )
is closed and bounded set (say, E) of real numbers. So, if E then

clE . Suppose E . Then for any 0 there is a point E
such that , for otherwise ( ) would be an upper
bound. Thus is a limit point of E . Hence, clE that proves the
theorem.
The next theorem deals with the continuity property for inverse

continuous one-to-one mappings.

Theorem 14.13 If : X Y is a continuous one-to-one mapping
of a compact metric space X into a metric space Y then the inverse
mapping 1 : Y X defined by

1 ( ( )) = X

is a continuous mapping too.

Proof. By Proposition 14.4, applied to 1 instead of , one can
see that it is su cient to prove that (V) is an open set of Y for any
open set V X . Fixing a set V we may conclude that the complement
V of V is closed in X and, hence, by Proposition 14.5 it is a compact.
As the result, (V ) is a compact subset of Y (14.11) and so, by
Theorem 14.2, it is closed in Y. Since is one-to-one and onto, (V)
is the compliment of (V ) and hence, it is open. This completes the
proof.

Uniform continuity

Definition 14.17 Let : X Y be a mapping of a space X into a
metric space Y. A mapping is said to be

a) uniformly continuous on X if for any 0 there exists =
( ) 0 such that Y ( ( ) ( 0)) for all 0 X for
which X (

0) .
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b) uniformly Lipschitz continuous on a ( )-set E with respect
to , if there exists a positive constant such that

Y ( ( ) ( 0 )) X (
0)

for all 0 E.

Remark 14.4 The di erent between the concepts of continuity and
uniform continuity concerns two aspects:

a) uniform continuity is a property of a function on a set, whereas
continuity is defined for a function in a single point;

b) , participating in the definition (14.50) of continuity, is a function
of and a point , that is, = ( ) whereas , participating
in the definition (14.17) of simple continuity, is a function of
only serving for all points of a set (space) X , that is, = ( ).

Evidently that any uniformly continues function is continuous but
not inverse. The next theorem shows when both concepts coincide.

Theorem 14.14 If : X Y is a continuous mapping of a compact
metric space X into a metric space Y then is uniformly continuous
on X .

Proof. Continuity means that for any point X and any 0
we can associate a number ( ) such that

X X ( ) ( ) implies Y ( ( ) ( )) 2 (14.54)

Define the set

J ( ) := { X : X ( ) ( ) 2}

Since J ( ) the collection of all sets J ( ) is an open cover of X
and by the compactness of X there are a finite set of points 1

such that
X J ( 1) · · · J ( ) (14.55)

Put
˜ ( ) :=

1

2
min { ( 1) ( )} 0
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Now let X satisfies the inequality X ( ) ˜ ( ). By the com-
pactness (namely, by (14.55)) there is an integer (1 ) such
that J ( ) that implies

X ( )
1

2
( )

and, as the result,

X ( ) X ( ) + X ( ) ˜ ( ) +
1

2
( ) ( )

Finally, by (14.54)

Y ( ( ) ( )) Y ( ( ) ( )) + Y ( ( ) ( ))

that completes the proof.

Remark 14.5 The alternative proof of this theorem may be obtained
in the following manner: assuming that is not uniformly continuous
we conclude that there exists 0 and the sequences { } { } on
X such that X ( ) 0 but Y ( ( ) ( )) . The last is

in a contradiction with Theorem 14.3.

Next examples shows that compactness is essential in the hypothe-
ses of the previous theorems.

Example 14.6 If E is a non compact in R then

1. There is a continuous function on E which is not bounded, for
example,

( ) =
1

1
E := { R : | | 1}

Here, E is a non compact, ( ) is continuous on E, but evi-
dently unbounded. It is easy to check that it is not uniformly
continuous.

2. There exists a continuous and bounded function on E which has
no maximum, for example,

( ) =
1

1 + ( 1)2
E := { R : | | 1}
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Evidently that
sup
E
( ) = 1

whereas
1

2
( ) 1 and, hence, has no maximum on E.

Continuity of a family of functions: equicontinuity

Definition 14.18 A family F of functions ( ) defined on some -
set E is said to be equicontinuous if for any 0 there exists a
= ( ), the same for all class F , such that X ( ) implies
Y ( ( ) ( )) for all E and any F .

The most frequently encountered equicontinuous families F occur
when F are uniformly Lipschitz continuous on X R and there
exists a 0 which is a Lipschitz constant for all F . In this
case = ( ) can be chosen as = .
The following claim can be easily proven.

Claim 14.5 If a sequence of continuous functions on a compact set
X R is uniformly convergent on X , then it is uniformly bounded
and equicontinuous.

The next two assertions usually referred to as the Ascoli-Arzelà’s
theorems(see the reference in (Hartman 2002)). They will be used
below for the analysis of Ordinary Di erential Equations.

Theorem 14.15 (on the propagation, Ascoli-Arzelà 1883-1895)
Let on a compact -set of E, the sequence of functions { ( )} =1 2

be equicontinuous and convergent on a dense subset of E. Then there
exists a subsequence { ( )} =1 2 which is uniformly convergent on
E.

Another version of the same fact looks as follows.

Theorem 14.16 (on the selection, Ascoli-Arzelà 1883-1895)
Let on a compact -set of E R , the sequence of functions
{ ( )} =1 2 be uniformly bounded and equicontinuous. Then there
exists a subsequence { ( )} =1 2 which is uniformly convergent on
E.
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Proof. Let us consider the set of all rational numbers R
E . Since R is countable, all of its elements can be designated by
numbers, i.e., R = { } ( = 1 ). The numerical vector-sequence
{ ( 1)} =1 2 is norm-bounded, say, k ( 1)k . Hence, we can
choose a convergent sequence { ( 2)} =1 2 which is also bounded
by the same . Continuing this process we obtain a subsequence
{ ( )} =1 2 that converges in a point = 1 2 . Let :=
( ). Show that the sequence { } is uniformly convergent on E to

a continuous function (E). In fact, { } converges in any point
of R by the construction. To establish it convergence in any point
of E , it is su cient to to show that for any fixed E the sequence
{ ( )} converges in itself. Since { ( )} is equicontinuous, for any

0 there exists = ( ) such that for k 0k and 0 E
there is k ( ) ( 0)k . Choose such that k k that
implies k ( ) ( )k . But the sequence { ( )} converges in
itself. Hence, there is a number 0 such that k ( ) 0 ( 0)k
whenever 0

0. So,

k ( ) 0 ( 0)k k ( ) ( )k+
k ( ) 0 ( )k+ k 0 ( ) 0 ( 0)k 3

Thus { ( )} converges at each E . It remains to prove that
{ ( )} converges uniformly on E and, therefore, its limit is from
(E). Again, by the assumption on equicontinuity, one can cover the

set E with the finite -set containing, say, subsets. In each of them
select a rational numbers, say, 1 ... By the convergence of { ( )}
there exists 0 such that k ( ) 0 ( )k whenever 0

0,
so that

k ( ) 0 ( )k k ( ) ( )k+
k ( ) 0 ( )k+ k 0 ( ) 0 ( )k 3

where is selected in such a way that belongs to the same -subset
as . Taking 0 , this inequality implies k ( ) ( )k 3 for
all from the considered -subset. but this exactly means the uniform
converges of { ( )}. Theorem is proven.

Connectedness

The definition of the connectedness of a set E has been given in Defini-
tion 14.7. Here we will discuss its relation with the continuity property
of a function .
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Lemma 14.2 If : X Y is a continuous mapping of a metric
space X into a metric space Y, and if E is a connected subset of X ,
then (E) is connected.

Proof. On the contrary, assume that (E) = A B with non
empty sets A B Y such that A B = . Put G = E 1 (A) and
H = E 1 (B). Then E = G H and both G and H are non empty.
Since A clA it follows that G 1 (clA) and (clG) clA. Taking
into account that (H) = B and clA B = we may conclude that
G H = . By the same argument we conclude that G clH = .
Thus, G and H are separated that is impossible if E is connected.
Lemma is proven.
This theorem serves as an instrument to state the important result

in R which is known as the Bolzano theorem which concerns a global
property of real-valued functions continuous on a compact interval
[ ] R: if ( ) 0 and ( ) 0 then the graph of the function
( ) must cross the - axis somewhere in between. But this theorem

as well as other results, concerning the analysis of functions given on
R , will be considered in details below in the chapter named "Elements
of Real Analyses".

Homeomorphisms

Definition 14.19 Let : S T be a function mapping points from
one metric space (S S) to another (T T ) such that it is one-to-one
mapping or, in other words, 1 : T S exists. If additionally
is continuous on S and 1 on T then such mapping is called a
topological mapping or homeomorphism , and the spaces (S S)
and ( (S) T ) are said to be homeomorphic.

It is clear from this definition that if is homeomorphism then 1

is homeomorphism too. The important particular case of a homeomor-
phism is, the so-called, an isometry, i.e., it is a one-to one continuous
mapping which preserves the metric, namely, which for all 0 S
keeps the identity

T ( ( ) ( 0)) = S (
0) (14.56)
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14.2.6 The contraction principle and a fixed point
theorem

Definition 14.20 Let X be a metric space with a metric . If maps
X into X and if there is a number [0 1) such that

( ( ) ( 0)) ( 0) (14.57)

for all 0 X , then is said to be a contraction of X into X .
Theorem 14.17 (the fixed point theorem) If X is a complete met-
ric space and if is a contraction of X into X , then there exists one
and only one point X such that

( ) = (14.58)

Proof. Pick 0 X arbitrarily and define the sequence { }
recursively by setting +1 = ( ) = 0 1 . Then, since is a
contraction, we have

( +1 ) = ( ( ) ( 1))
( 1) · · · ( 1 0)

Taking and in view of the triangle inequality, it follows

( )
P
= +1

( 1) ( 1 + · · ·+ ) ( 1 0)

( 1 + · · ·+ 1) ( 1 0) (1 ) 1 ( 1 0)

Thus { } is a Cauchy sequence, and since X is a complete metric
space, it should converge, that is, there exists lim := . And, since

is a contraction, it is continuous (in fact, uniformly continuous).
Therefore ( ) = lim ( ) = lim = . The uniqueness follows

from the following consideration. Assume that there exists another
point X such that ( ) = . Then by (14.57) it follows ( )

( ( ) ( )) = ( ) which may only happen if ( ) = 0
that proves the theorem.

14.3 Resume

The properties of sets which remain invariant under every topological
mapping is usually called the topological properties. Thus properties
of being open, closed, or compact are topological properties.


