Chapter 14

Sets, Functions and Metric
Spaces

14.1 Functions and sets

14.1.1 The function concept

Definition 14.1 Let us consider two sets A and B whose elements
may be any objects whatsoever. Suppose that with each element x € A
there is associated, in some manner, an element y € B which we
denote by y = f(x).

1. Then f is said to be a function from A to B or a mapping of
A into B.

2. If € C A then f (£) is defined to be the set of all elements f (x),
x € &€ and it is called the image of € under f. The notations
f(A) is called the range of f (evidently, that f(A) C B). If
f(A) = B we say that f maps A onto B.

3. For D C B the notation f~' (D) denotes the set of all x € A
such that f(z) € B. We call f~' (D) the inverse image of
D under f. So, if y € D then f~1(y) is the set of all x € A
such that f (x) = y. If for each y € B the set f~1 (y) consists
of at most one element of A then f is said to be one-to-one
mapping of A to B.
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The one-to-one mapping f means that f(z1) # f(xq) if 21 # 29
for any x1, 2o € A. We often will use the following notation for the

mapping f:
141)

If, in particular, A = R™ and B = R™ we will write

‘f :R* — Rm‘ (14.2)

Definition 14.2 If for two sets A and B there exists an one-to-one
mapping then we say that these sets are equivalent and we write

(14.3)

Claim 14.1 The relation of equivalency (~) clearly has the following
properties:

a) it is reflexive, i.e., A~ A;
b) it is symmetric, i.c., if A~ B then B~ A;

c) it is transitive, i.e., if A~ B and B~ C then A~ C.

14.1.2 Finite, countable and uncountable sets

Denote by 7, the set of positive numbers 1,2, ..., n, that is,

T =A{1,2,...,n}

and by J we will denote the set of all positive numbers, namely,

J=1{12 .}

Definition 14.3 For any A we say:
1. A is finite if
A~ T,

for some finite n (the empty set &, which does not contain any
element, is also considered as finite);
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2. A is countable (enumerable or denumerable) if
A~T

3. A is uncountable if it is neither finite nor countable;
4. A is at most countable if it is both finite or countable.

Evidently that if A is infinite then it is equivalent to one of its
subsets. Also it is clear that any infinite subset of a countable set is
countable.

Definition 14.4 By a sequence we mean a function f defined on
the set J of all positive integers. If x, = f(n) it is customarily to
denote the corresponding sequence by

{zp} = {21, 22, ...}

(sometimes, this sequence starts with xy but not with x1).

Claim 14.2
1. The set N of all integers is countable;
2. The set Q of all rational numbers is countable;

3. The set R of all real numbers is uncountable.

14.1.3 Algebra of sets

Definition 14.5 Let A and ) be sets. Suppose that with each element
a € A there is associated a subset £, C Q. Then

a) The union of the sets &, is defined to be the set S such that
x € S if and only if v € &, at least for one a € A. It will be
denoted by

S:= & (14.4)

a€A

If A consists of all integers (1,2, ...,n), that means, A = 7, we
will use the notation

S:=U¢&, (14.5)
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and if A consists of all integers (1,2,...), that means, A = 7,
we will use the notation

5= & (14.6)
a=1

The intersection of the sets &, is defined as the set P such that
x € P if and only if x € &, for every a € A. It will be denoted

by

S=0NE& (14.7)
acA

If A consists of all integers (1,2, ...,n), that means, A = 7, we
will use the notation

§:= & (14.8)

a=1

and if A consists of all integers (1,2, ...), that means, A = 7,
we will use the notation

5= & (14.9)
a=1

If for two sets A and B we have AN B = &, we say that these
two sets are disjoint.

¢) The complement of A relative to B, denoted by B — A, is de-

fined to be the set

B-—A:={z:2€B, but v ¢ A} (14.10)

The sets AU B, AN B and B — A are illustrated at Fig.14.1.
Using these graphic illustrations it is possible easily to prove the
following set-theoretical identities for union and intersection.

Proposition 14.1

1.

AU(BUC) = (AUB)UC, AN(BNC) = (ANB)NC
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AUz ANz % -4

Figure 14.1: Two sets relations.

2.

AN(BUC)=(ANB)U(ANC)
3.

(AUuB)N(AUC)=AU(BNC)
4.

AuB)NBUC)N(ICNA)=ANB)U(ANC)U(BNC)

d.

AN(B—-C)=(ANB)—-(ANC)
6.

A-C)Nn(B-C)=(ANB)-C
7.

(A-B)uB=A
if and only if B C A.

|ACc AUB, ANBC A|




286 Chapter 14. Sets, Functions and Metric Spaces

AU =A ANo =0

10.

|[AUB=B, ANB=A|

if A C B.

The next relations generalize the previous unions and intersections
to arbitrary ones.

Proposition 14.2

1. Let f : S — T be a function and A,B any any subsets of S.
Then

f(AUB) = f(A)U f(B)

2. For any Y C T define f~ () as the largest subset of S which
f maps intoY. Then

a)
X C (X))
b)
Q) cy
and
U =Y
if and only if T = f(S).
c)
PO UXe) = 1)U (D)
d)
PNy =f1)n 1 (%)
e)

T =-Y)=8-f10)
and for subsets B C A C S it follows that

f(A-B)=f(A) - [ (B)




14.2. Metric spaces 287

14.2 Metric spaces

14.2.1 Metric definition and examples of metrics

Definition 14.6 A set X, whose elements we shall call points, is said
to be a metric space if with any two points p and q of X there is
associated a real number d (p,q), called a distance between p and q,
such that

a)
d(p,q) >0ifp#q
d(p.p) =0 (14.11)
b)
d(p,q) = d(q,p) (14.12)

c) for any r € X the following "triangle inequality" holds:

d(p,q) <d(p,r) +d(r.q) (14.13)

Any function with these properties is called a distance function
or a metric.

Example 14.1 The follouwing functions are metrics:

1. For any p,q from the Euclidian space R"

a) the Fuclidian metric:

d(p.q) = llp— 4| (14.14)

b) the discrete metric:

d(p,q) :{ (1) Zﬁ;g (14.15)

c) the weighted metric:

d(p,q9) =llp=dllg:= V=0 Q-0
p,q) = llp Z)Q:QT;; V'Y= | (1416
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d) the module metric:

dp.q) =2 Ipi — ai (14.17)

e) the Chebyshev’s metric:

d(p,q) = max{|p1 — q1|, .-, [P — @} (14.18)

f) the Prokhorov’s metric:

Ip — 4l
d(p,q) = ———2_ 0,1 14.19

2. For any zyand 23 of the complex plane C

d(Zl,Zg) = |Zl — 22| =

\/(Re (21 — ,22))2 + (Im (2 — 22))2

(14.20)

14.2.2 Set structures

Let X be a metric space. All points and sets mentioned below will be
understood to be elements and subsets of X

Definition 14.7

a) A neighborhood of a point x is a set N, (x) consisting of all
points y such that d (z,y) < r where the number r is called the
radius of N, (x), that is,

Ny () ={x e X :d(x,y) <r} (14.21)

b) A point x € X is a limit point of the set £ C X if every
neighborhood of x contains a point y # x such that q € £.

c) If x € € and x is not a limit point of then x is called an isolated
point of £.

d) € C X is closed if every limit of £ is a point of €.
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e) A point x € £ is an interior point of £ if there is a neighbor-
hood of N, (z) of x such that N, (z) C &.

f) & is open if every point of € is an interior point of £.

g) The complement ¢ of £ is the set of all points © € X such
that © ¢ E.

h) &€ is bounded if there exists a real number M and a point x € £
such that d (xz,y) < M for ally € €.

i) € is dense in X if every point x € X is a limit point of £, or a
point of €, or both.

j) € is connected in X if it is not a union of two nonempty sepa-
rated sets, that is, £ can not be represented as £ = AU B where

A+, B+ and ANB=a.

Example 14.2 The set Jopen (p) defined as

Jopen :={x € X, d(x,p) <7}

is an open set but the set Juoseq (p) defined as

Jclosed (p) = {x € X? d(ﬁ,p) S ’l“}

1s closed.

The following claims seem to be evident and, that’s why, they are
given without proofs.

Claim 14.3

1. Every neighborhood N, (x) C &€ is an open set.

2. If x is a limit point of £ then every neighborhood N, (x) C &
contains infinitely many points of £.

3. A finite point set has no limit points.

Let us prove the following lemma concerning complement sets.
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Lemma 14.1 Let {&,} be a collection (finite or infinite) of sets &, C
X. Then

(Lg Sa)c = Qeg (14.22)

C

Proof. If x ¢ U5a> then, evidently, =z ¢ (J&, and, hence,
x ¢ &, for any . This means that x € (ES. Thus,

(U 5a> c (& (14.23)
Conversely, if x € (&S then x € £ for every o and, hence, = ¢ |J&,.

So, x € (U 8a> that implies

REg= (U 5a> (14.24)

Combining (14.23) and (14.24) gives (14.22). Lemma is proven. m
This lemma provides the following corollaries.

Corollary 14.1

a) A set & is open if and only if its complement E¢ is closed.
b) A set & is closed if and only if its complement E° is open.

¢) For any collection {€,} of open sets &, the set | JE, is open.
d) For any collection {&,} of closed sets &, the set (ES is closed.

e) For any finite collection {&, ...,E,} of open sets &, the set (ES

18 open too.

f) For any finite collection {&, ..., E,} of closed sets &, the set | E,

1s closed too.
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Definition 14.8 Let X' be a metric space and £ C X. Denote by &'
the set of all limit points of £. Then the set cl€ defined as

€ :=Eué] (14.25)

1s called the closure or &.

The next properties seem to be logical consequences of this defin-
ition.

Proposition 14.3 If X be a metric space and £ C X, then
a) cl€ is closed;
b) € =cl€ if and only if £ is closed;
¢) cl€ C P for every closed set P C X such that € C P;

d) If is a nonempty set of real numbers which is bounded above,
e, 3#E CR andy :=sup€& < oco. Then y € cl€ and, hence,
y e & if £ is closed.

Proof.

a) If x € X and y ¢ cl€ then z is neither a point of £ nor a limit
point of £. Hence = has a neighborhood which does not intersect £.
Therefore the complement £¢ of £ is an open set. So, cl€ is closed.

b) If £ = cl€ then by a) it follows that £ is closed. If £ is closed
then for £, defined in (14.8), we have that £ C £. Hence, £ = cl€.

¢) P is closed and P D £ (defined in (14.8)) then P O P’ and,
hence, P D &’. Thus P D cl€.

d) If y € € then y € cl€. Assume y ¢ £. Then for any ¢ > 0 there
exists a point x € &£ such that y — ¢ < z < y, for otherwise (y — ¢)
would be an upper bound of £ that contradicts to the supposition
sup & =y. Thus y is a limit point of £. Hence, y € cl€.

The proposition is proven. m

Definition 14.9 Let £ be a set of a metric space X. A point x € £
is called a boundary point of £ if any neighborhood N, (z) of this
point contains at least one point of £ and at least one point of X — &.
The set of all boundary points of £ is called the boundary of the set
& and is denoted by OE.
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It is not difficult to verify that

9€ = cl€N cl(X — &) (14.26)

Denoting by

lint& := £-9¢| (14.27)

the set of all internal points of the set £, it is easily verify that

int€ = X— cl (X - &)
int (X — &) =X—cl€
int (int€) = int€
If cl€N D = @ then 9 (€ UD) = 0EU 9D

(14.28)

14.2.3 Compact sets
Definition 14.10

1. By an open cover of a set £ in a metric space X we mean a
collection {G.} of open subsets of X such that

£cUGa (14.29)

2. A subset IC of a metric space X 1is said to be compact if every
open cover of IC contains a finite subcover, more exactly, there
are a finite number of indices o, ..., o, such that

£CGuU UG, (14.30)

Remark 14.1 Fuvidently that every finite set is compact.

Theorem 14.1 A set K C Y C X is a compact relative to X if and
only if K is a compact relative to ).

Proof. Necessity. Suppose K is a compact relative to X'. Hence,
by the definition (14.30) there exists its finite subcover such that

KCGoU- U Ga, (14.31)
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where G,, is an open set with respect to X. On the other hand
K C UV, where {V,} is a collection of sets open with respect to V.

But any open set V, can be represented as V, = Y NG,. So, (14.31)
implies

KCVy,U---U V,, (14.32)
Sufficiency. Conversely, if K is a compact relative to ) then there
exists a finite collection {V,} of open sets in ) such that (14.32)

holds. Putting V, = Y NG, for a special choice of indices oy, ..., a, it
follows that V, C G, that implies (14.31). Theorem is proven. m

Theorem 14.2 Compact sets of metric spaces are closed.

Proof. Suppose K is a compact subset of a metric space X. Let

r € X but x ¢ K and y € K. Consider the neighborhoods N, (z)
1

N (y) of these points with r < §d (x,y). Since K is a compact there

are finitely many points ¥, ..., , such that
KCN:(y)U-U N (ya) =N

Y =N,(x)Nn---NN,, (), then evidently V is a neighborhood of
x which does not intersect N and, hence, V C K°. So, z is an interior
point of I¢. Theorem is proven. m

The following two propositions seem to be evident.

Proposition 14.4
1. Closed subsets of compact sets are compacts too.
2. If F is closed and IC is compact then F N K is compact.

Theorem 14.3 If £ is an infinite subset of a compact set KC then &
has a limit point in K.

Proof. If no point of K were a limit point of £ then y € K would
have a neighborhood N, (y) which contains at most one point of &£
(namely, y if y € £). It is clear that no finite subcollection {N,, (v)}
can cover £. The same is true of K since & C K. But this contradicts
the compactness of K. Theorem is proven. m

The next theorem explains the compactness property especially in
R"™ and is often applied in a control theory analysis.
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Theorem 14.4 If a set £ C R"™ then the following three properties
are equivalent:

a) € is closed and bounded.
b) € is compact.

¢) Every infinite subset of € has a limit point in E.

Proof. It is the consequence of all previous theorems and proposi-
tions and stay for readers consideration. The details of the proof can
be found in Chapter 2 of (Rudin 1976). =

Remark 14.2 Notice that properties b) and c) are equivalent in any
metric space, but a) not.

14.2.4 Convergent sequences in metric spaces
Convergence

Definition 14.11 A sequence {z,} in a metric space X is said to
converge if there is a point x € X for which for any € > 0 there
exists an integer n. such that n > n. implies that d (x,,x) < . Here
d (zn, ) is the metric (distance) in X. In this case we say that {x,}
converges to x, or that x is a limit of {x,}, and we write

limz, =2 orz, — x (14.33)

n—oo n—oo

If {x,} does not converge, it is usually said to diverge.

Example 14.3 The sequence {1/n} converge to 0 in R, but fails to
converge in Ry :={zx € R |z > 0}.

Theorem 14.5 Let {x,} be a sequence in a metric space X.

1. {x,} converges to x € X if and only if every neighborhood N ()
of © contains all but (excluding) finitely many of the terms of
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If o’ 2" € X and

T, — 2 andx, — 2"
n—oo n—oo

then

.l‘/ — x//

If {x,} converges then {x,} is bounded.

If £ C X and x is a limit point of £ then there is a sequence
{z,} in € such that x = lim x,,.

n—oo

Proof.

1.

a) Necessity. Suppose ¥, — x and let N (z) (for some ¢ > 0)

be a neighborhood of z. The conditions d(y,z) < e, y € X
imply y € M. (x). Corresponding to this ¢ there exists a number
n. such that for any n > n. it follows that d(x,,z) < e. Thus,
z, € N (z). So, all z,, are bounded.

b) Sufficiency. Conversely, suppose every neighborhood of x
contains all but finitely many of the terms of {z, }. Fixinge > 0
denoting by AN (z) the set of all y € X such that d (y,z) < e.
By the assumption there exists n. such that for any n > n,. it
follows that x, € N (z). Thus d(z,,z) < ¢ if n > n. and,
hence, z,, — .

n—oo

. For the given ¢ > 0 there exist integers n’ and n” such that n > n’

implies d (x,,,2") < €/2 and n > n” implies d (x,,2") < £/2. So,
for n > max {n/,n"} it follows d (2, 2") < d (2', xp,)+d (z,, 2") <
e. Taking € small enough we conclude that d (2, 2") = 0.

Suppose x, — x. Then, evidently there exists an integer ng

n—oo

such that for all n > ny we have that d(z,,z) < 1. Define
r = max{l,d(zy,2),...,d(xy,,x)}. Then d(z,,z) < r for all
n=12, ...

For any integer n = 1,2,.... there exists a point =, € £ such
that d (z,,z) < 1/n. For any given ¢ > 0 define n. such that
en. > 1. Then for n > n. one has d(z,,z) < 1/n < ¢ that
means that z,, — z.

n—oo
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This completes the proof. m

Subsequences

Definition 14.12 Given a sequence {x,} let us consider a sequence
{ni} of positive integers satisfying ny < ng < ---. Then the sequence
{zn, } is called a subsequence of {z,}.

Claim 14.4 If a sequence {x,} converges to x then any subsequence
{zn, Yof {xn} converges to the same limit point x.

Proof. This result can be easily proven by contradiction. Indeed,
assuming that two different subsequences {x,, } and {z,, } have dif-
ferent limit points 2’ and z”, then it follows that there exists 0 <
e < d(«',2") and a number k. such that for all k£ > k. we shall have:
d (:Enk,aj'n].) > ¢ that is in the contradiction with the assumption that
{z,} converges. m

Theorem 14.6

a) If{x,} is a sequence in a compact metric space X then it obligatory
contains some subsequence {x,, } convergent to a point of X.

b) Any bounded sequence in R"™ contains a convergent subsequent.

Proof.

a) Let € be the range of {z,}. If {x,} converges then the desired
subsequence is this sequence itself. Suppose that {x,} diverges. If £ is
finite then obligatory there is a point x € £ and numbers ny < ny < ---
such that 1 = 29 = - - - = . The subsequence {z,,} so obtained
converges evidently to x. If £ is infinite then by Theorem (14.3) &
has a limit point z € X'. Choose n; so that d(x,,,z) < 1, and, hence,
there are integer n; > n;_; such that d (x,,,z) < 1/i. This means that
Ty, converges to x.

b) This follows from a) since Theorem (14.4) implies that every
bounded subset of R™ lies in a compact sunset of R™.

Theorem is proven. m
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Cauchy sequences

Definition 14.13 A sequence {x,} in a metric space X is said to be
a Cauchy (fundamental) sequence if for every ¢ > 0 there is an
integer n. such that d (z,,z,) < € if both n > n. and m > n..

Defining the diameter of £ as

diam &£ := supd (z,y) (14.34)
z,ye€

one may conclude that if £, consists of the points {x,,_, ©,_41, ...} then
{z,} is a Cauchy sequence if and only if

lim diam € =0 (14.35)

Ne—00

Theorem 14.7

a) If cl€ is the closure of a set £ in a metric space X then

|diam € = diam cl€| (14.36)

b) If KC,, is a sequence of compact sets in X such that IC,, D K1

(n=2,3,...) then the set K := m IC, consists exactly of one

point. "
Proof.
a) Since £ C cl€ it follows that
diam& < diam cl€ (14.37)

Fix € > 0 and select x,y € cl€. By the definition (14.25) there are
to points 2’y € &€ such that both d (z,2") < ¢ and d(y,y’') < € that
implies
d(z,y) <d(z,2') +d(@',y) +d(y,y) <
2¢e +d(2',y) < 2+ diam&

As the result, we have

diam cl€ < 2¢ + diamé&
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and since ¢ is arbitrary it follows that
diam cl€ < diam& (14.38)
The inequalities (14.37) and (14.38) give (14.36).

b) If IC contains more then one point then diam K > 0. But for
each n we have that I, D K, so that diam K, > diam K. This
contradict that diam KC,, — 0.

n—oo

Theorem is proven. m

The next theorem explains the importance of fundamental se-
quence in the analysis of metric spaces.

Theorem 14.8

a) Every convergent sequence {x,} given in a metric space X is a
Cauchy sequence.

b) If X is a compact metric space and if {x,} is a Cauchy sequence
in X then {x,} converges to some point in X.

¢) InR™ a sequence converges if and only if it is a Cauchy sequence.
Usually, the claim c¢) is referred to as the Cauchy criterion.

Proof.

a) If x,, — x then for any € > 0 there exists an integer n. such that
d(xn,x) < e forall n > n.. So, d(x,,xm) < d(xp,z)+d(x,x,) <2
if n,m > n.. Thus {z,} is a Cauchy sequence.

b) Let {x,} be a Cauchy sequence and the set &, contains the
points ,_, Tn.+1, Tn.+2, --- . Then by Theorem (14.7) and in view of
(14.35) and (14.36)

lim diam cl&,, = lim diam &, =0 (14.39)
Being a closed subset of the compact space X each cl&,, is compact
(see Proposition 14.4). And since &, D &,11 then cl&, D cl&, 1. By
Theorem 14.7 b), there is a unique point x € X which lies in cl&,. The
expression (14.39) means that for any € > 0 there exists an integer n.
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such that diam cl&, < € if n > n.. Since = € cl&, then d (z,y) < ¢ for
any x € cl&, that equivalent to the following: d (z,x,) < € if n > n..
But this means that x,, — x.

¢) Let {z,} be a Cauchy sequence in R™ and define &,_ like in the
statement b) but with x,, € R" instead of x,. For some n. we have
that diam &, < 1. The range of {x,} is the union of &, and the
finite set {x1,Xa,...,x,._1}. Hence, {x,} is bounded and since every
bounded sunset in R” has a compact closure in R", the statement
follows from the statement b).

Theorem is proven. m

Definition 14.14 A metric space where each Cauchy sequence con-
verges is said to be complete.

Example 14.4

1. By Theorem (14.8) it follows that all Fuclidean spaces are com-
plete.

2. The space of all rational numbers with the metric d(x,y) =
|z — y| is not complete.

3. In R™ any convergent sequence is bounded but not any bounded
sequence obligatory converges.

There is a special case when bounded sequence obligatory con-
verges. Next theorem specifies such sequences.

Theorem 14.9 (Weierstrass theorem) Any monotonic
sequence {s,} of real numbers, namely, when

a) {s,} is monotonically non-decreasing: s, < s,i1;
b) {s.} is monotonically non-increasing: s, > spi1;
converges if and only if it is bounded.

Proof. If {s,} converges it is bounded by Theorem (14.5) the
claim 3. Suppose that and {s,} is bounded, namely, sup s, = s < oc.
Then s, < s and for every € > 0 there exists an integer n. such that
s—¢e < s, < s for otherwise s — £ would be an upper bound for {s,}.
Since {s,} increases and ¢ is arbitrary small this means s, — s. The
case S, > Sp11 is considered analogously. Theorem is proven. m
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Upper and lower limits in R

Definition 14.15 Let {s,} be a sequence of real numbers in R.

a) If for every real M there exists an integer ny; such that s, > M
for all n > ny; we then write

Sp — 00 (14.40)

b) If for every real M there exists an integer nys such that s, < M
for all n > nyr we then write

(11.41)

c) Define the upper limit of a sequence {s,} as

limsups,, := lim sups, (14.42)

n—00 =00 p>¢

which may be treated as a biggest limit of all possible subse-
quences.

d) Define the lower limit of a sequence {s,} as

liminfs, := lim infs, (14.43)

n—oo t—oo n>t

which may be treated as a lowest limit of all possible subse-
quences.

The following theorem whose proof is quit trivial is often used in
many practical problems.

Theorem 14.10 Let {s,} and {t,} be two sequences of real numbers
in R. Then the following properties hold:

1.
liminfs, < limsups, (14.44)
2.
limsups, = o if s, — 00
n—oo 14.45
liminfs, = —oco if s, = —0 ( )

n—oo
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3.
limsup (s, +t,) < limsups,+ limsupt, (14.46)

4.
liminf (s, +t,) > liminfs,+ liminft, (14.47)

5. If lim s, = s then

n—oo

liminfs, = liminfs, = s (14.48)

n—oo n—oo

6. If s,, <t, for alln > M which is fized then

limsups,, < limsupt,

n—00 n—00 14.49
liminfs,, < liminft, ( )

Example 14.5

1.
lim sup sin (gn> =1, liminf sin <gn> =-1

2.

. 7r . T

lim sup tan (§n> = 00, liminf tan (§n> = —00

(=1"
3. For s, = ———
or s T¥1/n
limsups,, = 1, liminfs, = —1

14.2.5 Continuity and function limits in metric
spaces

Continuity and limits of functions

Let X and Y be metric spaces and £ C X, f maps & into )Y and
peX.
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Definition 14.16

a) We write

limf (z) =gq (14.50)

r—p

iof there is a point ¢ € Y such that for every € > 0 there exists
ad=0(ep) >0 for which dy (f (x),q) < e forall x € £ for
which dy (z,p) < §. The symbols dy and dx are referred to as
the distance in X and ), respectively. Notice that f may be not
defined at p since p may not belong to £.

b) If, in addition, p € € and dy (f (z), f (p)) < € for every e > 0 and
for all x € € for which dx (x,p) < § = (¢) then f is said to be
continuous at the point p.

c) If f is continuous at every point of € then f is said to be contin-
uous on &.

d) If forany z,y € EC X

dy (f (), f(y)) < Lgdx (z,y), Ly < o0 (14.51)

then f is said to be Lipschitz continuous on £.

Remark 14.3 If p is a limit point of € then f is continuous at the
point p if and only if

lim f (z) = f (p) (14.52)

r—p

The proof of this result follows directly from the definition above.

The following properties related to continuity are evidently ful-
filled.

Proposition 14.5
1. If for metric spaces X, Y, Z the following mappings are defined:
f:€ECX =V, g9:f(€)—Z

and

hiz):=g(f(x),z€f
then h is continuous at a point p € € if f is continuous at p and
g is continuous at f (p).
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2. If f: X -R" and f(x) == (f1 (x),..., fn (x)) then f is continu-

ous if and only if all f; (z) (i =T1,n) are continuous.

3. If f,g : X =R"™ are continuos mappings then f + g and (f,g)
are continuous too on X.

4. A mapping f: X — Y is continuous on X if and only if f~1 (V)
is open (closed) in X for every open (closed) set V C ).
Continuity, compactness and connectedness

Theorem 14.11 If f : X — ) is a continuous mapping of a compact
metric space X into a metric space Y then f (X) is compact.

Proof. Let {V,} be an open cover of f(X). By continuity of
f and in view of Proposition 14.5 it follows that each of the sets
f1(V,) is open. By the compactness of X there are finitely many
indices ay, ..., a;, such that

X C Lnj W) (14.53)

Since f(f~1(€)) C &€ for any & C Y it follows that (14.53) implies
that f(X) C U Va,;- This completes the proof. m

a=1

Corollary 14.2 If f : X — R" is a continuous mapping of a compact
metric space X into R™ then f (X)) is closed and bounded, that is, it
contains its all limit points and ||f (z)|| < M < oo for any x € X.

Proof. It follows directly from Theorems 14.11 and 14.4. m
The next theorem is particular important when f is real.

Theorem 14.12 (Weierstrass theorem) If f : X — R" is a con-
tinuous mapping of a compact metric space X into R and

M = supf(x), m= inff(x)

reX reX

then there exist points xys, ., € X such that

M = f(xy), m=f(zm)
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This means that f attains its maximum (at xpr) and its minimum (at
Tm), that is,

M = supf(x)= ggg/xf(x),mz inff (r) = minf (z)

reX TeEX reX

Proof. By Theorem 14.11 and its Corollary it follows that f (X)
is closed and bounded set (say, £) of real numbers. So, if M € £ then
M € cl€. Suppose M ¢ £. Then for any € > 0 there is a point y € &
such that M — e <y < M, for otherwise (M — ¢) would be an upper
bound. Thus y is a limit point of £. Hence, y € cl€ that proves the
theorem. m

The next theorem deals with the continuity property for inverse
continuous one-to-one mappings.

Theorem 14.13 If f : X — Y is a continuous one-to-one mapping
of a compact metric space X into a metric space ) then the inverse
mapping f~: Y — X defined by

@) =2ex
1S a continuous mapping too.

Proof. By Proposition 14.4, applied to f~! instead of f, one can
see that it is sufficient to prove that f (V) is an open set of Y for any
open set V C X. Fixing a set )V we may conclude that the complement
V¢ of V is closed in & and, hence, by Proposition 14.5 it is a compact.
As the result, f(V°) is a compact subset of ) (14.11) and so, by
Theorem 14.2, it is closed in ). Since f is one-to-one and onto, f (V)
is the compliment of f (V) and hence, it is open. This completes the
proof. m

Uniform continuity

Definition 14.17 Let f : X — Y be a mapping of a space X into a
metric space Y. A mapping f is said to be

a) wuniformly continuous on X if for any € > 0 there exists § =
d(e) > 0 such that dy (f (), f(2) < € for all z,2’" € X for
which dy (z,2") < 4.
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b) uniformly Lipschitz continuous on a (z,z)-set £ with respect
to x, if there exists a positive constant Ly < oo such that

dy (f (z,2), f (2',2)) < Lydx (2,2")
forall x,2',z € €.

Remark 14.4 The different between the concepts of continuity and
uniform continuity concerns two aspects:

a) uniform continuity is a property of a function on a set, whereas
continuity is defined for a function in a single point;

b) 4, participating in the definition (14.50) of continuity, is a function
of € and a point p, that is, § = 6 (¢,p) , whereas §, participating
in the definition (14.17) of simple continuity, is a function of &
only serving for all points of a set (space) X, that is, 6 = § (g).

Evidently that any uniformly continues function is continuous but
not inverse. The next theorem shows when both concepts coincide.

Theorem 14.14 If f : X — ) is a continuous mapping of a compact
metric space X into a metric space Y then f is uniformly continuous
on X.

Proof. Continuity means that for any point p € X and any € > 0
we can associate a number § (¢, p) such that

r € X, dy (x,p) <0 (e,p) implies dy (f (), f (p)) <e/2 (14.54)
Define the set
J(p) :={r e X :dx(x,p) <d(e,p)/2}

Since p € J (p) the collection of all sets J (p) is an open cover of X
and by the compactness of X' there are a finite set of points p, ..., p,
such that

XCTP)U---UT (pn) (14.55)

Put

5@%:%mmw@mﬂwwﬂamﬂ>0
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Now let & € X satisfies the inequality dy (z,p) < 0 (¢). By the com-
pactness (namely, by (14.55)) there is an integer m (1 < m < n) such
that p € J (p,,) that implies

1
dX <x7pm) < 55 (gapm)

and, as the result,

~ 1
dx (xapm) <dxy (x,p) +dx (papm) < 5(5> + 55 (g,pm) <9 (5upm)
Finally, by (14.54)

dy (f (x), f(p)) < dy (f (@), f (pm)) +dy (f (pm) . f (p)) <€
that completes the proof. m

Remark 14.5 The alternative proof of this theorem may be obtained
in the following manner: assuming that f is not uniformly continuous
we conclude that there exists € > 0 and the sequences {x,}, {pn} on
X such that dy (x,,, pn) = 0 but dy (f (z,,), f (pn)) > €. The last is

in a contradiction with Theorem 14.5.

Next examples shows that compactness is essential in the hypothe-
ses of the previous theorems.

Example 14.6 If £ is a non compact in R then
1. There is a continuous function on £ which is not bounded, for
example,
1
f(x)= E={reR:|z| <1}

x—1

Here, £ is a non compact, f(x) is continuous on &, but evi-
dently unbounded. It is easy to check that it is not uniformly
continuous.

2. There exists a continuous and bounded function on £ which has
no maximum, for example,
1

f(x):m, E={reR:|z|] <1}
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Evidently that
supf (z) = 1

el

1
whereas 3 < f(x) <1 and, hence, has no maximum on &.

Continuity of a family of functions: equicontinuity

Definition 14.18 A family F of functions f () defined on some x-
set £ 1s said to be equicontinuous if for any € > 0 there exists a
d = 0 (g), the same for all class F, such that dx (z,y) < & implies
dy (f(z),f(y)) <e forallz,y € € and any f € F.

The most frequently encountered equicontinuous families F' occur
when f € F are uniformly Lipschitz continuous on X C R"™ and there
exists a Ly > 0 which is a Lipschitz constant for all f € F. In this
case § = 6 (¢) can be chosen as 6 = ¢/Ly.

The following claim can be easily proven.

Claim 14.5 If a sequence of continuous functions on a compact set
X C R" s uniformly convergent on X, then it is uniformly bounded
and equicontinuous.

The next two assertions usually referred to as the Ascoli-Arzela’s
theorems(see the reference in (Hartman 2002)). They will be used
below for the analysis of Ordinary Differential Equations.

Theorem 14.15 (on the propagation, Ascoli-Arzela 1883-1895)

Let on a compact x-set of £, the sequence of functions { f, (v)},_1 5.
be equicontinuous and convergent on a dense subset of £. Then there
exists a subsequence { fo, (¥)}_, ,  which is uniformly convergent on

.

Another version of the same fact looks as follows.

Theorem 14.16 (on the selection, Ascoli-Arzela 1883-1895)

Let on a compact x-set of £ C R", the sequence of functions

{fu () },1.5.. be uniformly bounded and equicontinuous. Then there
exists a subsequence { fo, (¥)},_, 5 which is uniformly convergent on

.
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Proof. Let us consider the set of all rational numbers R C
E. Since R is countable, all of its elements can be designated by
numbers, i.e., R = {r;} (j =1,...). The numerical vector-sequence
{fu (r1)},—1 5. is norm-bounded, say, ||f. (r1)|| < M. Hence, we can
choose a convergent sequence { f, (72)} v—1o  Which is also bounded
by the same M. Continuing this process’\;ve obtain a subsequence
{fp(rg)},_1 . that converges in a point ry, ¢ = 1,2,... Let f, =
fp (rp). Show that the sequence {f,} is uniformly convergent on £ to
a continuous function f € C'(€). In fact, {f,} converges in any point
of R by the construction. To establish it convergence in any point
of £, it is sufficient to to show that for any fixed x € £ the sequence
{f, ()} converges in itself. Since {f, (z)} is equicontinuous, for any
e > 0 there exists 0 = § (¢) such that for ||z —2'|| < § and z,2" € &
there is || f, (z) — f, (¢')|| < €. Choose r; such that ||z — ;|| < d that
implies || f, (z) — f, (r;)]| < e. But the sequence { f, (r;)} converges in
itself. Hence, there is a number py such that || f, (z) — fy (2/)]] < ¢
whenever p, p’ > py. So,

1fyp () = for (@) < 1 fp (2) = S (ri) | +
1o (r3) = for Il + Ly () = S ()] < 3¢
Thus {f, (z)} converges at each x € £. It remains to prove that
{f, (z)} converges uniformly on £ and, therefore, its limit f is from
C (€). Again, by the assumption on equicontinuity, one can cover the
set & with the finite J-set containing, say, [ subsets. In each of them
select a rational numbers, say, 71, ..., 7. By the convergence of { f, (z)}
there exists po such that ||f, (r;) — fy (7;)]| < € whenever p,p" > py,

so that
1fp (2) = fyr @) < | fp () = fo ()] +
1fp (5) = for (ri) | + Ly () = Sy (@)]] < 3¢
where j is selected in such a way that r; belongs to the same J-subset
as x. Taking p’ — oo, this inequality implies || f, (z) — f (z)]| < 3¢ for
all x from the considered d-subset. but this exactly means the uniform
converges of {f, (x)}. Theorem is proven. m

Connectedness

The definition of the connectedness of a set £ has been given in Defini-
tion 14.7. Here we will discuss its relation with the continuity property
of a function f.
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Lemma 14.2 If f : X — Y is a continuous mapping of a metric
space X into a metric space YV, and if £ is a connected subset of X,
then f (&) is connected.

Proof. On the contrary, assume that f(£) = AU B with non
empty sets A, B C Y such that ANB =@. Put G =&N ' (A) and
H=EN f~1(B). Then £ = GUH and both G and H are non empty.
Since A C clA it follows that G Cf~* (clA) and f (clG) C clA. Taking
into account that f (H) = B and clAN B = & we may conclude that
GgN'H=9. By the same argument we conclude that G NclH = &.
Thus, G and H are separated that is impossible if £ is connected.
Lemma is proven. m

This theorem serves as an instrument to state the important result
in R which is known as the Bolzano theorem which concerns a global
property of real-valued functions continuous on a compact interval
la,b] € R: if f(a) < 0 and f(b) > 0 then the graph of the function
f (z) must cross the x - axis somewhere in between. But this theorem
as well as other results, concerning the analysis of functions given on
R"™, will be considered in details below in the chapter named " Elements
of Real Analyses".

Homeomorphisms

Definition 14.19 Let f : S — T be a function mapping points from
one metric space (S,ds) to another (T,dr) such that it is one-to-one
mapping or, in other words, f~' : T — S ewists. If additionally f
is continuous on S and f~' on T then such mapping f is called a
topological mapping or homeomorphism , and the spaces (S, ds)
and (f (S),dr) are said to be homeomorphic.

It is clear from this definition that if f is homeomorphism then f~!
is homeomorphism too. The important particular case of a homeomor-
phism is, the so-called, an isometry, i.e., it is a one-to one continuous
mapping which preserves the metric, namely, which for all z,2" € S
keeps the identity

dr (f (z), f («') = ds (2, 2") (14.56)
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14.2.6 The contraction principle and a fixed point
theorem

Definition 14.20 Let X be a metric space with a metric d. If o maps
X into X and if there is a number c € [0, 1) such that

d (¢ (x),p () < cd(z,2) (14.57)
for all x,x’ € X, then ¢ is said to be a contraction of X into X.

Theorem 14.17 (the fixed point theorem) If X is a complete met-
ric space and if @ is a contraction of X into X, then there exists one
and only one point x € X such that

o(x)==x (14.58)

Proof. Pick 2y € X arbitrarily and define the sequence {xz,}
recursively by setting z,.1 = ¢ (x,), n = 0,1,.... Then, since ¢ is a
contraction, we have

d (anrla xn) =d (()0 (xn) P (xnfl)) S
cd (T, xp1) < -+ < d (21, T0)

Taking m > n and in view of the triangle inequality, it follows

Ad(Tm,xn) < Y d(mg,ziy) < (@™o + ) d (w1, 30) <
1=n+1

(T 1) d (2, 30) < (1 —¢) 7 d (21, 20)
Thus {z,} is a Cauchy sequence, and since X is a complete metric
space, it should converge, that is, there exists lim x,, := . And, since

n—0o0

¢ is a contraction, it is continuous (in fact, uniformly continuous).
Therefore ¢ (z) = lim ¢ (x,) = lim x, = x. The uniqueness follows
from the following coorisiderationé Xssume that there exists another
point y € X such that ¢ (y) = y. Then by (14.57) it follows d (z,y)
< cd(p(x),¢(y)) = cd(x,y) which may only happen if d(z,y) = 0
that proves the theorem. m

14.3 Resume

The properties of sets which remain invariant under every topological
mapping is usually called the topological properties. Thus properties
of being open, closed, or compact are topological properties.



