
Chapter 18

Topics of Functional
Analysis

In Chapter 14 there have been introduced the important concepts such
as

1) Lineality of a space of elements,

2) Metric (or norm) in a space,

3) Compactness, convergence of a sequence of elements and Cauchy
sequences,

4) Contraction principle.

As the examples we have considered in details the finite dimensional
spaces R and C of real and complex vectors (numbers). But the
same definitions of lineality and norms remain true if we consider as
another example a functional space (where an element is a function)
or a space of sequences (where an element is a sequence of real or
complex vectors). The specific feature of such spaces is that all of
them are infinite dimensional. This chapter deals with the analysis of
such spaces which is called "Functional Analysis".
Let us introduce two important additional concept which will be

use below.

Definition 18.1 The subset V of a linear normed space X is said to
be dense in X if its closure is equal to X .
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508 Chapter 18. Topics of Functional Analysis

This property means that every element X may be approx-
imated as closely as we like by some element V, that is, for
any X and any 0 there exists an element V such that
k k .
All normed linear spaces have dense subsets, but they need not be

obligatory countable subsets.

Definition 18.2 A normed linear space X is said to be separable if
it contains at least one dense subset which is countable.

The separable spaces have special properties that are important
in di erent applications. In particular, denoting the elements of such
countable subset by { } =1 it is possible to represent each element

X as the convergent series

=
P
=1

(18.1a)

where the scalars R are called the coordinates of the element
in the basis { } =1 .

18.1 Linear and normed spaces of func-
tions

Below we will introduce the examples of some functional spaces with
the corresponding norm within. The lineality and main properties of
a norm (metric) can be easily verified that’s why we leave this for a
reader as an exercise.

18.1.1 Space of all bounded complex numbers

Let us consider a set of sequences := { } =1 such that
C and sup k k (18.2)

where k k :=
rP

=1

¯ and introduce the norm in as

k k := sup k k (18.3)
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18.1.2 Space of all summable complex sequences

By the definition

:=

(
={ } =1 | C k k :=

μP
=1

k k
¶1 )

(18.4)

18.1.3 Space [ ] of continuous functions

It is defined as follows

[ ] := { ( ) | is continuous for all [ ]

k k [ ] := max
[ ]
| ( )|

¾
(18.5)

18.1.4 Space [ ] of continuously di erentiable
functions

It contains all functions which are -times di erentiable and the -th
derivative is continuous, that is

[ ] :=
©
( ) | ( ) exists and continuous

for all [ ] k k [ ] :=
P
=0

max
[ ]

¯̄
( ) ( )

¯̄ ¾
(18.6)

18.1.5 Lebesgue spaces [ ] (1 )

For each 1 it is defined by the following way:

[ ] :=

½
( ) : [ ] C | R

=

| ( )|
(here the integral is understood in the Lebesgue sense),

k k :=

μ R
=

| ( )|
¶1 ) (18.7)

Remark 18.1 Sure, here functions ( ) are not obligatory continu-
ous.
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18.1.6 Lebesgue spaces [ ]

It contains all measurable function from [ ] to C, namely,

[ ] := { ( ) : [ ] C |
k k := sup

[ ]

| ( )|
)

(18.8)

18.1.7 Sobolev spaces ( )

It consists of all functions (for the simplicity, real valued) ( ) defined
on which have -integrable continuous derivatives ( ) ( ) ( =1 ),
that is,

( ) := { ( ) : R | ( = 1 )
(the integral is understood in the Lebesgue sense),

k k ( ) :=

μ R | ( )| +
P
=1

R ¯̄
( ) ( )

¯̄ ¶1 ) (18.9)

More exactly, the Sobolev space is the completion (see definition be-
low) of (18.9).

18.1.8 Frequency domain spaces L × , RL × , L ×

and RL ×

By the definition

1) The Lebesgue space L × is the space of all -integrable complex
matrices, i.e.,

L × :=
©

: C C × |
k k

L
× :=

μ
1
2

R
=

(tr { ( ) ( )}) 1

¶1 )

(here ( ) := | ( ) )
(18.10)
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2) The Lebesgue space RL × is the subspace of L × containing
only complex matrices with rational elements, i.e., in

= k ( )k =1 ; =1

each element ( ) represents the polynomial ratio

( ) =
0 + 1 + +
0 + 1 + +

and are positive integer
(18.11)

Remark 18.2 If for each element of , then ( )
can be interpreted as a matrix transfer function of a linear
(finite-dimensional) system.

3) The Lebesgue space L × is the space of all complex matrices with
bounded (almost everywhere) on the imaginary axis elements,
i.e.

L
× :=

©
: C C

× |
k k

L
× := sup

:Re 0

1 2
max { ( ) ( )}

¾
= sup

( )

1 2
max { ( ) ( )}

(18.12)

(the last equality may be regarded to as a the generalization of
the Maximum Modulus Principle 17.10 for matrix functions).

4) The Lebesgue space RL × is the subspace of L × containing
only complex matrices with rational elements given in the form
(18.11).

18.1.9 Hardy spacesH × , RH × , H × and RH ×

The Hardy spaces H × , RH × , H × and RH × are subspaces of
the corresponding Lebesgue spaces L × , RL × , L × and RL ×

containing complex matrices with only regular (holomorphic) (see De-
finition 17.2) elements on the open half-plane Re 0.
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Remark 18.3 If for each element of , then ( )
RH

× can be interpreted as a matrix transfer function of a
stable linear (finite-dimensional) system.

Example 18.1

1

2
RL2 := RL

1×1
2

1

2
RL := RL1×1

1

2 +
HL2 := HL

1×1
2

1

2 +
RH := RH1×1

2
L2 := L

1×1
2 2 +

H2 := H
1×1
2

1

2
L := L1×1

1

2 +
H := H1×1

18.2 Banach spaces

18.2.1 Basic definition

Remember that a linear normed (topological) space X is said to be
complete (see Definition 14.14) if every Cauchy (fundamental) se-
quence has a limit in the same space X . The concept of a complete
space is very import since even without evaluating the limit one can
determine whether a sequence is convergent or not. So, if a metric
(topological) space is not a complete it is impossible talk about a
convergence, limits, di erentiation and so on.

Definition 18.3 A linear, normed and complete space is called a Ba-
nach space.

18.2.2 Examples of incomplete metric spaces

Sure that not all linear normed (metric) spaces are complete. The
example given below illustrates this fact.

Example 18.2 (of a noncomplete normed space) Let us consider
the space [0 1] of all continuous functions : [0 1] which are
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absolutely integrable (in this case, in the Riemann sense) on [0 1], that
is, for which

k k [0 1] :=

1Z
= 1

| ( )| (18.13)

Consider the sequence { } of the continuous functions

:=

½
if [0 1 ]

1 if [1 1]

Then for

k k [0 1] =
1R
=0

| ( ) ( )| =

1R
=0

| | +
1R
=1

|1 | +
1R

=1

|1 1|
( )

2 2
+
(1 )2

2
=
1

2

μ
1 1

¶
0

as . So, { } is a Cauchy sequence. However, its pointwise
limit is

( )

½
1 if 0 1
0 if = 0

In other words, the limit is a discontinuous function and, hence, it is
not in [0 1]. This means that the functional space [0 1] is not
complete.

Example 18.3 By the same reason, the spaces [0 1] (the space
of continuous and -integrable functions) are not complete.

18.2.3 Completion of metric spaces

There exist two possibilities to correct the situation and to provide
the completeness property for a linear normed space if initially bit is
not a complete:

• try to change the definition of a norm;
• try to extend the class of considered functions (it was suggested
by Cauchy).
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Changing of a norm

To illustrate the first approach related to changing of a norm let us
consider again the space of all functions continuous at the interval
[0 1], but instead of the Lebesgue norm (18.13) we consider the Cheby-
shev’s type norm k k [ ] as in (18.5). This means that instead of the
space [0 1] we will consider the space [ ] (18.5). Evidently,
that this space is complete, since it is known that uniform convergent
sequences of continuous functions converges to a continuous function.
Hence, [ ] is a Banach space under this norm.

Claim 18.1 By the same reasons it is not di cult to show that all
spaces [ ] (18.6) are Banach.

Claim 18.2 The spaces [ ] (1 ) (18.7), [ ] (18.8),
L

× , (23.19) and L × (18.12) are Banach too.

Completion

Theorem 18.1 Any linear normed space X with a norm k kX can
be considered as a linear manifold which is complete in some Banach
space X̂ . This space X̂ is called the completion of X .
Proof. Consider two fundamental sequences { } and { 0 } with

elements from X . We say that they are equivalent if k 0 k 0
as and we will write { } { 0 }. The set of all fundamental
sequences may be separated (factorized) at non crossed classes: { }
and { 0 } are included in the same class if and only if { } { 0 }.
The set of all such classes X we denoted by X̂ . So,

X̂ :=
[
X X

6=
X =

Let us make the space X̂ a normed space. To do that, define the
operation of summing of the classes X by the following manner: if
{ } X and { } X then class (X + X ) may be defined as the
class containing { + }. The operation of the multiplication by a
constant may be introduced as follows: we denoted by X the class
containing { } if { } X . It is evident that X̂ is a linear space.
Define now the norm in X̂ as

kX k := lim k kX ({ } X )
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It easy to check the norm axioms for such norm and to show that

a) X may be considered as a linear manifold in X̂ ;
b) X is dense in X̂ , i.e., there exists { } X such that k X kX

0 as as for some X X ;
c) X̂ is complete (Banach).

This complete the proof.
This theorem can be interpreted as the following statement.

Corollary 18.1 For any linear norm space X there exists a Banach
space X̂ and a linear, injective map : X X̂ such that (X ) is
dense in X̂ and for all X

k kX̂ = k kX

18.3 Hilbert spaces

18.3.1 Definition and examples

Definition 18.4 A Hilbert space H is an inner (scalar) product
space that is complete as a linear normed space under the induced
norm

k kH :=
ph i (18.14)

Example 18.4 The following spaces are Hilbert

1. The space 2 of all summable complex sequences (see (18.4)
for = 2) under the inner product

h i
2
:=
P
=1

¯ (18.15)

2. The Lebesgue space 2 [ ] of all integrable (in Lebesgue sense)
complex functions (see (18.7) for = 2) under the inner product

h i
2[ ] :=

R
=

( )¯( ) (18.16)
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3. The Sobolev’s space 2 ( ) of all times di erentiable on
quadratically integrable (in Lebesgue sense) complex functions
(see (18.9) for = 2) under the inner product

h i ( ) :=
P
=0

¿ À
2[ ]

(18.17)

4. The frequency domain space L ×
2 of all -integrable complex

matrices (23.19) under the inner product

h i
L

× :=
R
=

tr{ ( ) ( )} (18.18)

5. TheHardy spaces H ×
2 (the subspace of L ×

2 containing only
holomorphic in the right-hand semi-plan C+ := { C |Re 0}
functions) under the inner product (18.18).

18.3.2 Orthogonal complement

Definition 18.5 LetM be a subset of a Hilbert space H, i.e.,M
H. Then the distance between a point H andM is defined by

( M) := inf
M
k k (18.19)

The following claim seems to be evident.

Claim 18.3 If M, then ( M) = 0. If M andM is closed
set (see Definition 14.7), then ( M) 0.

Corollary 18.2 If M H is closed convex set and M, then
there exists a unique element M such that ( M) = k k.

Proof. Indeed, suppose that there exists another element M
such that

( M) = k k = k k :=
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Then

4 2 = 2 k k2 + 2 k k2 = k k2+
4

°°°° +

2

°°°°
2

k k2 + 4 inf
M
k k2

k k2 + 4 2

that gives k k2 0, or equivalently, = .

Corollary 18.3 IfM H is a subspace of H (this means that it is
closed convex linear manifold in H) then for any H there exists a
unique element M M such that

( M) := inf
M
k k = k Mk (18.20)

This element M M is called the orthogonal projection of the
element H onto the subspaceM H.
Lemma 18.1 Let ( M) = k Mk whereM is a subspace of a
Hilbert space H with the inner product h iH. Then ( M) M,
that is, for any M

h M iH = 0 (18.21)

Proof. By the definition (18.20) for any C (here M +
M) we have

k ( M + )k k Mk
that implies

h M iH + ¯ h MiH + ¯ k k2 0

Taking =
h M iH

k k2 one has
|h M i|2

k k2 0 that leads

to the equality h M iH = 0. Lemma is proven.
Definition 18.6 If M is a subspace of a Hilbert space H then the
orthogonal complementM is defined by

M := { H | h iH = 0 for all M} (18.22)
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It is easy to show thatM is a closed linear subspace of and that
H can be uniquely decomposed as the direct sum

H = M̄ M (18.23)

This means that any element H has the unique representation

= M̄ + M (18.24)

where M M̄ and M M such that k k2 = k Mk2 + k M k2.
Theorem 18.2 Let If M is a subspace of a Hilbert space H. M is
dense in H if and only ifM = {0}.
Proof. a) Necessity. Let M is dense in H. This means that

M̄ = H. Assume that there exists 0 H such that 0 M. Let
{ } M and H. Then 0 = h 0i h 0i = 0 since
M is dense in H. Taking = 0 we get that h 0 0i = 0 that gives
0 = 0. b) Su ciency. LetM = {0}, that is, if h 0i = 0 for any
M, then 0 = 0. Suppose thatM is not dense in H. This means

that there exists 0 M̄. Then by the orthogonal decomposition

0 = 0 + 0 where 0 M̄ and 0

¡M̄¢
=M . Here 0 6= 0 for

which h 0 iH = 0 for any M̄. By the assumption such element
0 = 0. We get the contradiction. Theorem is proven.

18.3.3 Fourier series in Hilbert spaces

Definition 18.7 An orthonormal system (set) { } of functions
in a Hilbert space H is a nonempty subset { | 1} of H such that

h iH = =

½
1 if =
0 if 6= (18.25)

1. The series
P
=1

is called the series in H with respect of the

system { } (18.25);
2. For any H the representation (if it exists)

( ) =
P
=1

( ) (18.26)

is called the Fourier expansion of with respect to { }.



18.3. Hilbert spaces 519

Lemma 18.2 In (18.26)

= h iH (18.27)

Proof. Premultiplying (18.26) by and using (18.25) we find

h iH =
X
=1

h iH =
X
=1

=

that proves (18.27). Lemma is proven.

Corollary 18.4 (the Parseval equality)

k k2 = P
=1

|h iH|2 (18.28)

Proof. It follows from the relation

h iH =
P
=1

P
=1

h iH h iH h iH =P
=1

P
=1

h iH h iH =
P
=1

|h iH|2

Example 18.5

1) Classical Fourier expansion. In H = 2 [0 1] the corre-
sponding orthogonal basis { } is

{ } = ©1 2 sin (2 ) 2 cos (2 ) 1
ª

that implies

( ) = 0 + 2
X
=1

sin (2 ) + 2
X
=1

cos (2 )

where

0 =
1R
=0

( ) =
1R
=0

( ) 2 cos (2 )

=
1R
=0

( ) 2 sin (2 )
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2) Legandre expansion. In H = 2 [0 1] the corresponding or-
thogonal basis { } is { } = { } where

:=
1

2 !

h
( 2 1)

i
1

18.3.4 Linear -manifold approximation

Definition 18.8 The collection of the elements

:=
P
=1

H C ( 1) (18.29)

is called the linear -manifold generated by the system of functions
{ } =1 .

Theorem 18.3 The best 2-approximation of any elements H
by the element from the -manifold (18.29) is given by the Fourier
coe cients = (18.27), namely,

inf
: =1

°°°° P
=1

°°°°
2

2

=

°°°° P
=1

°°°°
2

2

(18.30)

Proof. It follows from the identity

k k2
2
=

°°°° P
=1

°°°°
2

2

=°°°°P
=1

( )
P
=1

°°°°
2

2

=

P
= +1

| |2 k k2
2
+
P
=1

| |2 k k2
2

that reaches the minimum if =
¡

: = 1
¢
. Theorem is

proven.
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18.4 Linear operators and functionals in
Banach spaces

18.4.1 Operators and functionals

Definition 18.9

1. Let X and Y be be linear normed spaces (usually, either Banach
or Hilbert spaces) and : D Y be a transformation (or
operator) from a subset D X to Y. D = D ( ) is called the
domain (image) of the operator and values (D) constitute
the range (the set of possible values) R ( ) of . If the range of
the operator is finite-dimensional the we say that the operator
has the finite range.

2. If Y is a scalar field F (usually R) then the transformations
are called functionals.

3. A functional is linear if it is additive, i.e., for any D

( + ) = +

and homogeneous, i.e., for any D and any F

( ) =

4. Operators for which the domain D and the range (D) are in
one-to-one correspondence are called invertible. The inverse
operator is denoted by 1 : (D) D, so that

D 1 ( (D))

Example 18.6

1. The shift operator : defined by

= +1

for any = 1 2 .
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2. The integral operator : 2 [ ] R defined by

:=
R
=

( ) ( )

for any 2 [ ].

3. The di erential operator : D ( ) = 1 [ ] [ ]
defined by

:= ( )

for any 1 [ ] and any [ ].

It is evident the following statement.

Claim 18.4

1. is invertible if and only if it is injective, that is, = 0
implies = 0. The set { D | = 0} is called the kernel of
the operator and denoted by

ker := { D | = 0}

So, is injective if and only if ker = {0}.
2. If is linear and invertible then 1 is also linear.

18.4.2 Continuity and boundedness

Continuity

Definition 18.10

1. Let : D ( ) Y be a map (operator) between two linear
normed spaces X (with a norm k·kX ) and Y (with a norm k·kY).
It is said to be a continuous at 0 X if, given 0, there
exists a = ( ) 0 such that k ( ) ( 0)kY , whenever
k 0kX .
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2. is semi-continuous at a point 0 X if it transforms any
convergent sequence { } D ( ), 0, in to a
sequence { ( )} R ( ) weakly convergent to ( 0), i.e.,
k ( ) ( 0)k 0 when .

3. is continuous (or semi-continuous) on D ( ) if it is con-
tinuous (or semi-continuous) at every point in D ( ).

Lemma 18.3 Let X and Y be Banach spaces and be a linear op-
erator defined at X . If is continuous at the point 0 X , then
is continuous at any point 0 X .

Proof. This result follows from the identity 0 = ( 0).
If 0, then := 0 0. By continuity at zero 0 that
implies 0 0. Lemma is proven.
So, a linear operator may be called continuous, if it is continuous

at the point 0 = 0.

Boundedness

Definition 18.11

1. A linear operator : D ( ) X Y between two linear normed
spaces X (with a norm k·kX ) and Y (with a norm k·kY) is said
to be bounded if there exists a real number 0 such that for
all D ( )

k kY k kX (18.31)

The set of all bounded linear operators : D ( ) X Y
is usually denoted by L (X Y).

2. A linear operator : D ( ) X Y is called a compact
operator if it maps any bounded subset of X onto a compact set
of Y.

3. The induced norm of a linear bounded operator : D ( )
X Y may be introduced as follows

k k := sup
D( ) 6=0

k kY
k kX

= sup
D( ) k kX=1

k kY (18.32)
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(here it is assumed that if D ( ) = {0} then by the definition
k k = 0 since 0 = 0).

It seems to be evident that the continuity and boundedness for
linear operators are equivalent concepts.

Claim 18.5 A linear operator : D ( ) X Y is continuous if
and only if it is bounded.

Example 18.7

1. If :=

Ã P
=1

| |
!1

( 1), then the "weighting"

operator defined by

= :=
P
=1

(18.33)

making from to ( 1 + 1 = 1) is linear and bounded since
by the Hölder inequality (16.134)

k k =
P
=1

¯̄̄
¯̄P
=1

¯̄̄
¯̄ P

=1

ÃP
=1

| |
!ÃP

=1

| |
!

=

ÃP
=1

| |
!

= k k

2. If :=
R
=

R
=

| ( )| , then the integral operator

: X = [ ] Y = [ ] = Y ( 1 + 1 = 1) defined
by

= :=
R
=

( ) ( ) (18.34)

is linear and bounded since by the Hölder inequality (16.134)

k k [ ] :=
R
=

¯̄̄
¯ R
=

( ) ( )

¯̄̄
¯

R
=

μ R
=

| ( )|
¶μ R

=

| ( )|
¶

= k k [ ]



18.4. Linear operators and functionals in Banach spaces 525

3. If := max
D̄

P
=0

| ( )| , then the di erential operator

: D X = [ ] Y = [ ] = Y defined by

= :=
P
=0

( ) ( ) ( ) (18.35)

is linear and bounded since

k k [ ] := max
D̄

¯̄̄
¯P
=0

( ) ( ) ( )

¯̄̄
¯

max
D̄

μP
=0

| ( )|P
=0

¯̄
( ) ( )

¯̄¶ k k [ ]

Sequence of linear operators and uniform convergence

It is possible to introduce several di erent notions of a convergence in
the space of linear bounded operators L (X Y) acting from X to Y.

Definition 18.12 Let { } L (X Y) be a sequence of operators.

1. We say that

- uniformly converges to L (X Y) if k k 0
whenever . Here the norm k k is understood as in
(18.32);

- strongly converges to L (X Y) if k kY 0
whenever for any X .

2. If the operator is dependent on the parameter A, then
- ( ) is uniformly continuous at 0 A, if

k ( ) ( 0)k 0 as 0

- ( ) is strongly continuous at 0 A, if for all X

k ( ) ( 0) kY 0 as 0

In view of this definition the following claim seems to be evident.
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Claim 18.6 uniformly converges to L (X Y) if and only if
uniformly on X in the ball k kX 1.

Theorem 18.4 If X is a linear normed space and Y is a Banach
space, then L (X Y) is a Banach space too.

Proof. Let { } be a fundamental sequence in the metric of
L (X Y), that is, for any 0 there exists a number 0 = 0 ( )
such that for any 0 and any natural we have k + k .
Then the sequence { } is also fundamental. But Y is complete,
and hence, { } converges. Denote := lim . By this formula

any element X is mapped into an element of Y, and, hence, it
defines the operator = . Let us prove that the linear operator is
bounded (continuous). First, notice that {k k} is also fundamental.
This follows from the inequality |k + k k k| k + k.
But it means that {k k} is bounded, that is, there exists 0 such
that k k for every 1. Hence, k k k k. Taking the
limit in the right-hand side we obtain k k k k that shows that
is bounded. Theorem is proven.

Extension of linear bounded operators

Bounded linear operators that map into a Banach space always have
a unique extension to the closure of their domain without changing of
its norm value.

Theorem 18.5 Let : D ( ) X Y be a linear bounded operator
(functional) mapping the linear normed space X into a Banach space
Y. Then it has a unique bounded extension ˜ : D ( ) Y such that

1. ˜ = for any D ( ) ;

2.
°°° ˜°°° = k k.

Proof. If D ( ), put ˜ = . Let X , but D ( ).
By the density of D ( ) in X , there exists the sequence { } D ( )
converging to . Put ˜ = lim . Let us show that this definition is

correct, namely, that the limit exists and it does not depend on the se-
lection of the convergent sequence { }. The existence follows from the
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completeness property of Y since k k k k k kX .
Hence, lim exists. Supposing that there exists another sequences

{ 0 } D ( ) converging to we may denote := lim and

:= lim 0 . Then we get

k k k k+ k 0 k+ k 0 k 0

But k k k k k k that for implies
°°° ˜ °°° k k k k

or equivalently,
°°° ˜°°° k k. We also have

°°° ˜°°° := sup
k kX 1

°°° ˜ °°°
sup

D( ) k kX 1

°°° ˜ °°° = k k. So, we have
°°° ˜°°° = k k. The linearity

property of ˜ follows from the linearity of . Theorem is proven.

Definition 18.13 The operator ˜ constructed in the theorem 18.5 is
called the extension of to the closure D ( ) of its domain D ( )
without increasing its norm.

The principally more complex case arises when D ( ) = X . The
following important theorem says that any linear bounded functional
(operator) can be extended to the whole space X without increasing
into norm. A consequence of this result is the existence of nontrivial
linear bounded functionals on any normed linear space.

Theorem 18.6 (The Hahn-Banach theorem) Any linear bounded
functional : D ( ) X Y defined on a linear subspace D ( ) of
a linear normed space X can be extended to a linear bounded func-
tional ˜ defined on the whole X with the preservation of the norm,
i.e., ˜ = for any D ( ) such that

°°° ˜°°° = k k.
Proof. Here we present only the main idea of the proof.
a) If X is separable, then the proof is based on the theorem 18.5

using the following lemma.

Lemma 18.4 Let X is a real normed space and L is a linear manifold
in X where there is defined a linear functional . If 0 L and L1 :=
{ + 0 | L R} is a linear manifold containing all elements
+ 0, then there exists a linear bounded functional 1 defined on L1
such that it coincides with on L and preserving the norm on L1,
namely, k 1k = k k.
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Then, since X is separable, there exists a basis { } 1 such that
we can construct the sequence of -manifolds

L 1 :=

(X
=1

| X R

)

connected by L +1 = L + { +1}, L0 := . Then we make the
extension of to each of the subspaces L 1 based on the lemma
above. Finally we apply the theorem 18.5 to the space X =

1
L

using the density property of X .
b) In general case, the proof is based on the Zorn’s lemma (see

(Yoshida 1979)).

Corollary 18.5 Let X be a normed (topological) space and X ,
6= 0. Then there exists a linear bounded functional , defined on X ,

such that its value at any point is equal to

( ) := h i = k k (18.36)

and
k k := sup

( ) k k 1

h i = 1 (18.37)

Proof. Consider the linear manifold L := { }, R where we
define as follows: h i = k k. So, we have h i = k k. Then
for any = it follows |h i| = | | · k k = k k = k k This means
that k k = 1 and completes the proof.

Corollary 18.6 Let in a normed space X there is defined a linear
manifold L and the element 0 L having the distance up to this
manifold, that is, := inf

L
k 0k. Then there exists a linear func-

tional defined on the whole X such that

1. h i = 0 for any L
2. h 0 i = 1
3. k k = 1
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Proof. Take L1 := L+ { 0}. Then any element L1 is uniquely
defined by = + 0 where L and R. Define on L1 the
functional : = . Now, if L, then = 0 and h i = 0. So, the
statement 1 holds. If = 0, then = 1 and, hence, h 0 i = 1 that
verifies the statement 2. Finally,

|h i| = | | = | | · k k
k k =

k k°°° + 0

°°°
k k

that gives k k 1 . On the other hand, by the "inf" definition,
there exists a sequence { } L such that = lim k 0k. This
implies

1 = h 0 i k 0k · k k
Taking limit in the last inequality we obtain 1 k k that gives
k k 1 . Combining both inequalities we conclude the statement
3. Corollary is proven.

Corollary 18.7 A linear manifold L is not dense in a Banach space
X if and only if there exists a linear bounded functional 6= 0 such
that h i = 0 for any L.

Proof. a) Necessity. Let L̄ 6= X . Then there exists a point
0 X such that the distance between 0 and L is positive, namely,
( 0 L) = 0. By the Corollary 18.6 there exists such that
h 0 i = 1 that is, 6= 0 but h i = 0 for any L. b) Su ciency.
Let now L̄ = X . Then for any X , in view of the density property,
there exists { } L such that when . By the
conditions that there exists 6= 0, = 0 for any L, we have
h i = lim h i = 0. Since is arbitrary, it follows that = 0.

Contradiction. Corollary is proven.

Corollary 18.8 Let { }1 be a system of linearly independent ele-
ments in a normed space X . Then there exists a system of linear
bounded functionals { }1 , defined on the whole X , such that

h i = ( = 1 ) (18.38)

These two systems { }1 and { }1 are called bi-orthogonal.
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Proof. Take 1 and denote by 1 the linear span of the elements
2 . By the linear independency, it follows that ( 1 1) 0.
By the Corollary 18.6 we can find the linear bounded functional 1

such that h 1 1i = 1 h 1i = 0 on 1. Iterating this process we
construct the desired system { }1 .

18.4.3 Compact operators

In this subsection we will consider a special subclass of bounded linear
operators having properties rather similar to those enjoyed by opera-
tors on finite-dimensional spaces.

Definition 18.14 Let X and Y be normed linear spaces. An operator
L (X Y) is said to be a compact operator if maps bounded

set of X onto relative compact sets of Y, that is, is linear and for
any bounded sequence { } in X the sequence { } has a convergence
subsequence in Y.

Claim 18.7 Let X and Y be normed linear spaces and : X Y be
a linear operator. Then the following assertions holds:

a) If is bounded, that is, L (X Y) and dim ( ) , then
the operator is compact.

b) If dim (X ) , then is compact.

c) The range of is separable if is compact.

d) If { } is a sequence of compact operators from X to Banach space
Y that converges uniformly to , then is a compact operator.

e) The identity operator on the Banach space X is compact if and
only if dim (X ) .

f) If is a compact operator in L ( Y) whose range is closed subspace
of Y, then the range of is finite-dimensional.

Proof. It can be found in (Rudin 1976) and (Yoshida 1979).
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Example 18.8

1. Let X = 2 and : 2 2 is defined by :=
³

1
2

2
3

3

´
.

Then is compact. Indeed, defining by

:=
³

1
2

2
3

3
0 0

´
we have

k k2 =
X
= +1

1
2
| |2 k k2

( + 1)2

and, hence, k k ( + 1) 1. This means that con-
verges uniformly to and, by the previous claim (d), is com-
pact.

2. Let ( ) 2 ([ ]× [ ]) Then the integral operator :

2 ([ ]) 2 ([ ]) defined by ( ) ( ) :=
R
=

( ) ( )

is a compact operator (see (Yoshida 1979)).

Theorem 18.7 (Approximation theorem) Let :M X Y
be a compact operator where X ,Y are Banach spaces and M is a
bounded nonempty subset of X . Then for every = 1 2 there
exists a continuous operator :M Y such that

sup
M
k ( ) ( )k 1 and dim (span (M)) (18.39)

as well as (M) co (M) - convex hull of (M).

Proof (see (Zeidler 1995)). For every there exists a finite (2 ) 1-
net for (M) and elements (M) ( = 1 ) such that for
all M

min
1

k ( ) k (2 ) 1

Define for all M the, so-called, Schauder operator by

( ) :=
X
=1

( )

ÃX
=1

( )

! 1
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where
( ) := max

©
1 k ( ) k ; 0ª

are continuous functions. In view of this is also continuous and,
moreover,

k ( ) - ( )k= ( )=

°°°°°
X
=1

( ) ( - ( ))

°°°°°
ÃX

=1

( )

! 1

X
=1

( ) k( ( ))k
ÃX

=1

( )

! 1

X
=1

( ) 1

ÃX
=1

( )

! 1

= 1

Theorem is proven.

18.4.4 Inverse operators

Many problems in Theory of Ordinary and Partial Di erential equa-
tions may be presented as a linear equation = given in functional
spaces X and Y where : X Y is a linear operator. If there ex-
ists the inverse operator 1 : R ( ) D ( ), then the solution of
this linear equation may be formally represented as = 1 . So,
it seems to be very important to notice under which conditions the
inverse operator exists.

Set of nulls and isomorphic operators

Let : X Y be a linear operator where X and Y are linear spaces
such that D ( ) X and R ( ) Y.

Definition 18.15 The subset N ( ) D ( ) defined by

N ( ) := { D ( ) | = 0} (18.40)

is called the null space of the operator .

Notice that



18.4. Linear operators and functionals in Banach spaces 533

1. N ( ) 6= since 0 N ( ).
2. N ( ) is a linear subspace (manifold).

Theorem 18.8 An operator is isomorphic (it transforms each
point D ( ) only into unique point R ( )) if and only if
N ( ) = {0}, that is, when the set of nulls consists only of the single
0-element.

Proof. a) Necessity. Let be isomorphic. Suppose that N ( ) 6=
{0}. Take N ( ) such that 6= 0. Let also R ( ). Then
the equation = has a solution . Consider a point + . By
lineality of it follows ( + ) = . So, the element has at least
two di erent image and + . We have obtained the contradiction
to isomorphic property assumption. b) Su ciency. Let N ( ) = {0}.
But assume that there exist at least two 1 2 D ( ) such that

1 = 2 = and 1 6= 2. The last implies ( 1 2) = 0. But
this means that ( 1 2) N ( ) = {0}, or, equivalently, 1 = 2.
Contradiction.

Claim 18.8 Evidently that

• if a linear operator is isomorphic then there exists the inverse
operator 1.

• the operator 1 is a linear operator too.

Bounded inverse operators

Theorem 18.9 An operator 1 exists and, simultaneously, is
bounded if and only if the following inequality holds

k k k k (18.41)

for all D ( ) and some 0.

Proof. a) Necessity. Let 1 exists and bounded on D ( 1) =
R ( ). This means that there exists 0 such that for any R ( )
we have k 1 k k k. Taking = in the last inequality, we
obtain (18.41). b) Su ciency. Let now (18.41) holds. Then if = 0
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then by (18.41) we find that = 0. This means that N ( ) = {0} and
by Theorem 18.8 it follows that 1 exists. Then taking in (18.41)
= 1 we get k 1 k 1 k k for all R ( ) that proofs the
boundedness of 1.

Definition 18.16 A linear operator : X Y is said to be contin-
uously invertible if R ( ) = Y, is invertible and 1 L (X Y)
(that is, it is bounded).

Theorem 18.9 may be reformulated in the following manner.

Theorem 18.10 An operator is continuously invertible if and
only if R ( ) = Y and for some constant 0 the inequality (18.41)
holds.

It is not so di cult to prove the following result.

Theorem 18.11 (Banach) If L (X Y) (that is, is linear
bounded), R ( ) = Y and is invertible, then it is continuously in-
vertible.

Example 18.9 Let us consider in [0 1] the following simplest inte-
gral equation

( ) ( ) := ( )

1Z
=0

( ) = ( ) (18.42)

The linear operator : [0 1] [0 1] is defined by the left-hand

side of (18.42). Notice that ( ) = ( ) + , where =
1R
=0

( ) .

Integrating the equality ( ) = ( ) + 2 on [0 1], we obtain =
3

2

1R
=0

( ) . Hence, for any ( ) in the right-hand side of (18.42)

the solution is ( ) = ( )+
3

2

1R
=0

( ) := ( 1 ) ( ). Notice that

1 is bounded, but this means by the definition that the operator
is continuously invertible.
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Example 18.10 Let ( ) and ( ) ( = 1 ) are continuous on
[0 ]. Consider the following linear ordinary di erential equation
(ODE)

( ) ( ) := ( ) ( ) + 1 ( )
( 1) ( ) + + ( ) ( ) = ( ) (18.43)

under the initial conditions (0) = 0 (0) = = ( 1) (0) = 0 and
define the operator as the left-hand side of (18.43) which is, evi-
dently, linear with D ( ) consisting of all functions which are -times
continuously di erentiable, i.e., ( ) [0 ]. We will solve the
Cauchy problem finding the corresponding ( ). Let 1 ( ), 2 ( ),
( ) be the system of linearly independent solutions of (18.43) when
( ) 0 Construct the, so-called, Wronsky’s determinant

( ) :=

¯̄̄
¯̄̄
¯̄̄

1 ( ) · · · ( )
0
1 ( ) · · · 0 ( )
...

...
...

( 1)
1 ( )

( 1)
( )

¯̄̄
¯̄̄
¯̄̄

It is well known (see, for example (El’sgol’ts 1961)) that ( ) 6= 0
for all [0 ]. According to the Lagrange approach dealing with the
variation of arbitrary constants we may find the solution of (18.43)
for any ( ) in the form

( ) = 1 ( ) 1 ( ) + 2 ( ) 2 ( ) + + ( ) ( )

that leads to the following ODE-system for ( ) ( = 1 ):

0
1 ( ) 1 ( ) +

0
2 ( ) 2 ( ) + + 0 ( ) ( ) = 0

0
1 ( )

0
1 ( ) +

0
2 ( )

0
2 ( ) + + 0 ( ) 0 ( ) = 0
· · ·

0
1 ( )

( 1)
1 ( ) + 0

2 ( )
( 1)
2 ( ) + + 0 ( ) ( 1)

( ) = ( )

Resolving this system by the Cramer’s rule we derive 0 ( ) =
( )

( )
( )

( = 1 ) where ( ) is the algebraic complement of -th ele-
ment of the last -th row. Taking into account the initial conditions
we conclude that

( ) =
X
=1

( )

Z
=0

( )

( )
( ) :=

¡
1
¢
( )
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that implies the following estimate k k [0 ] k k [0 ] with =

max
[0 ]

P
=1

| ( )| R
=0

¯̄̄
¯ ( )

( )

¯̄̄
¯ that proofs that the operator is con-

tinuously invertible.

Bounds for k 1k
Theorem 18.12 Let L (X Y) be a linear bounded operator such
that k k 1 where is the identical operator (which is, obviously,
continuously invertible). Then is continuously invertible and the
following bounds holds:

k 1k 1

1 k k (18.44)

k 1k k k
1 k k (18.45)

Proof. Consider in L (X Y) the series ( + + 2 + ) where
:= . Since

°° °° k k this series uniformly converges (by
the Weierstrass rule), i.e.,

:= + + 2 +

It is easy to check that

( ) = +1

( ) = +1

+1 0

Taking the limits in the last identities we obtain

( ) = ( ) =

that shows that the operator is invertible and 1 = = .
So, = 1 and

k k k k+ k k+ k k2 + k k =
1 k k +1

1 k k
k k k k+ k k2 + k k =

k k k k +1

1 k k
Taking we obtain (18.44) and (18.45).
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18.5 Duality

Let X be a linear normed space and F be the real axis R, if X is real,
and be the complex plane C, if X is complex.

18.5.1 Dual spaces

Definition 18.17 Consider the space L (X F) of all linear bounded
functional defined on X . This space is called dual to X and is denoted
by X , so that

X := L (X F) (18.46)

The value of linear functional X on the element X we will
denote by ( ), or h i that is,

( ) = h i (18.47)

The notation h i is analogous to the usual scalar product and
turns out to be very useful in concrete calculations. In particular,
the lineality of X and X implies the following identities (for any
scalars 1 2 1 2, any elements 1 2 X and any functionals

1 2 X ):

h 1 1 + 2 2 i = 1 h 1 i+ 2 h 2 i
h 1 1 + 2 2i = ¯1 h 1i+ ¯2 h 2i (18.48)

(¯ means the complex conjugated value to . In real case ¯ = ). If
h i = 0 for any X , then = 0. This property can be considered
as the definition of the "null"-functional. Less trivial seems to be the
next property.

Lemma 18.5 If h i = 0 for any X , then = 0.

Proof. It is based on the Corollary 18.5 of the Hahn-Banach
theorem 18.6. Assuming the existence of 6= 0, we can find X
such that 6= 0 and h i = k k 6= 0 that contradicts to the identity
h i = 0 valid for any X . So, = 0.

Definition 18.18 In X one can introduce two types of convergence.
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• Strong convergence (on the norm in X ):

( X ), if k k 0.

• Weak convergence (in the functional sense) :
( X ), if for any X one has

h i h i.

Remark 18.4

1. Notice that the strong convergence of a functional sequence
{ } implies its weak convergence.

2. (Banach-Shteingauss): if and only if

a) {k k} is bounded;
b) h i h i on some dense linear manifold in X .

Claim 18.9 Independently of the fact whether the original topological
space X is Banach or not, the space X = L (X F) of all linear
bounded functional is always Banach.

Proof. It can be easily seen from the definition 18.3.
More exactly this statement can be formulated as follows.

Lemma 18.6 X is a Banach space with the norm

k k=k kX := sup
X k kX 1

| ( )| (18.49)

Furthermore, the following duality between two norms k·kX and k·kX
takes place:

k kX = sup
X k kX 1

| ( )| (18.50)

Proof. The details of the proof can be found in (Yoshida 1979).



18.5. Duality 539

Example 18.11 The spaces [ ] and [ ] are dual, that is,

[ ] = [ ] (18.51)

where 1 + 1 = 1 1 . Indeed, if ( ) [ ] and
( ) [ ], then the functional

( ) =
R
=

( ) ( ) (18.52)

is evidently linear, and boundedness follows from the Hölder inequality
(16.137).

Since the dual space of a linear normed space is always a Banach
space, one can consider the bounded linear functionals on X , which
we shall denote by X . Moreover, each element X gives rise to a
bounded linear functional in X by ( ) = ( ), X . It can
be shown that X X , that called the natural embedding of X into
X . Sometimes it happens that these spaces coincide. Notice that
this is possible if X is Banach space (since X is always Banach).

Definition 18.19 If X = X , the the Banach space X is called re-
flexive.

Such spaces play important role in di erent applications since they
possess many properties resembling ones in Hilbert spaces.

Claim 18.10 Reflexive space are all Hilbert spaces, R , , and

1

¡
¯
¢
.

Theorem 18.13 The Banach space X is reflexive if and only if any
bounded (by a norm) sequence of its elements contains a subsequence
which weakly converges to some point in X .

Proof. See (Trenogin 1980) the section 17.5, and (Yoshida 1979)
(p.264, the Eberlein-Shmulyan theorem)
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18.5.2 Adjoint (dual) and self-adjoint operators

Let L (X Y) where X and Y are Banach spaces. Construct the
linear functional ( ) = h i := h i where X and Y .

Lemma 18.7 1) D ( ) = X , 2) is linear operator, 3) is bounded.

Proof. 1) is evident. 2) is valid since

( 1 1 + 2 2) = h ( 1 1 + 2 2) i =

1 h ( 1) i+ 2 h ( 2) i = 1 ( 1) + 2 ( 2)

And 3) holds since | ( )| = |h i| k k k k k k k k k k.
From this lemma it follows that X . So, there is correctly

defined the linear continuous operator = .

Definition 18.20 The operator L (Y X ) defined by

h i := h i (18.53)

is called adjoint (or dual) operator of .

Lemma 18.8 The representation h i = h i is unique ( X )
for any D ( ) if and only if D ( ) = X .

Proof. a) Necessity. Suppose D ( ) 6= X . Then by the corollary
18.7 from the Hahn-Banach theorem 18.6 there exists 0 X 0

6= 0 such that h 0i = 0 for all D ( ). But then h i =
h + 0i = 0 for all D ( ) that contradicts with the assumption
of the uniqueness of the presentation.
b) Su ciency. Let D ( ) = X . If h i = h 1i = h 2i

then h 1 2i = 0 and by the same corollary 18.7 it follows that
1 2 = 0 that means that the representation is unique.

Lemma 18.9 If L (X Y) where X and Y are Banach spaces,
then k k = k k.
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Proof. By the property 3) of the previous lemma we have k k
k k k k, i.e., k k k k. But, by the corollary 18.5 from the Hahn-
Banach theorem 18.6, for any 0 such that 0 6= 0 there exists a
functional 0 Y such that k 0k = 1 and |h 0 0i| = k 0k that
leads to the following estimate:

k 0k = |h 0 0i| = |h 0 0i| k k k 0k k 0k = k k k 0k
So, k k k k and, hence, k k = k k that proves the lemma.
Example 18.12 Let X = Y = R be -dimensional Euclidian spaces.
Consider the linear operator

=

μ
:=
P
=1

, = 1

¶
(18.54)

Let (R ) = R . Since in Euclidian spaces the action of an
operator is the corresponding scalar product, then h i = ( ) =
( | ) = h i So,

= | (18.55)

Example 18.13 Let X = Y = 2 [ ]. Let us consider the integral
operator = given by

( ) =
R
=

( ) ( ) (18.56)

with the kernel ( ) which is continuous on [ ] × [ ]. We will
consider the case when all variables are real. Then we have

h i = R
=

μ R
=

( ) ( )

¶
( ) =

R
=

μ R
=

( ) ( )

¶
( ) =

R
=

μ R
=

( ) ( )

¶
( ) = h i

that shows that the operator ( = ) is defined by

( ) =
R
=

( ) ( ) (18.57)
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that is, is also integral with the kernel ( ) which is inverse to
the kernel ( ) of .

Definition 18.21 The operator L (X Y), where X and Y are
Hilbert spaces, is said to be self-adjoint (or Hermitian) if = ,
that is, if it coincides with its adjoint (dual) form.

Remark 18.5 Evidently that for self-adjoint operators D ( ) = D ( ).

Example 18.14

1. In R , where any linear operator is a matrix transformation,
it will be self-adjoint if it is symmetric, i.e., = |, or, equiv-
alently, = .

2. In C , where any linear operator is a complex matrix trans-
formation, it will be self-adjoint if it is Hermitian, i.e., = ,
or, equivalently, = ¯ .

3. The integral operator in the example 18.13 the integral operator
is self-adjoint in 2 [ ] if its kernel is symmetric, namely,

if ( ) = ( ).

It is easy to check the following simple properties of self-adjoint
operators.

Proposition 18.1 Let and be self-adjoint operators. Then

1. ( + ) is also self-adjoint for any real and .

2. ( ) is self-adjoint if an only if these two operators commute,
i.e., if = . Indeed, ( ) = ( ) = ( ).

3. The value ( ) is always real for any F (real or complex).
4. For any self-adjoint operator we have

k k = sup
k k 1

|( )| (18.58)
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18.5.3 Riesz representation theorem for Hilbert
spaces

Theorem 18.14 (F. Riesz) If H is a Hilbert space (complex or real)
with a scalar product (· ·), then for any linear bounded functional
defined on H, there exists the unique element H such that for all

H one has
( ) = h i = ( ) (18.59)

and, furthermore, k k = k k.

Proof. Let be a subspace of H. If = H, then for = 0 one
can take = 0 and the theorem is proven. If 6= H, there there exists
0 , 0 6= 0 (it is su cient to consider the case ( 0) = h 0 i = 1;
if not, instead of 0 we can consider 0 h 0 i). Let now H. Then

h i 0 , since

h h i 0 i = h i h i h 0 i = h i h i = 0

Hence, [ h i 0] 0 that implies

0 = ( h i 0 0) = ( 0) h i k 0k2

or, equivalently, h i = ¡ 0 k 0k2
¢
. So, we can take = 0 k 0k2.

Show now the uniqueness of . If h i = ( ) = ( ˜), then
( ˜) = 0 for any H. Taking = ˜we obtain k ˜k2 = 0
that proves the identity = .̃ To complete the proof we need to prove
that k k = k k. By the Cauchy-Bounyakovski-Schwartz inequality
|h i| = |( )| k k k k. By the definition of the norm k k it
follows that k k k k. On the other hand, h i = ( ) k k k k
that leads to the inverse inequality k k k k. So, k k = k k. Theo-
rem is proven.
Di erent application of this theorem can be found in (Riesz &

Nagy 1978 (original in French, 1955)).

18.5.4 Orthogonal projection operators in Hilbert
spaces

Let be a subspace of a Hilbert space H.
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Definition 18.22 The operator L (H ) ( = ), acting in H
such that

:= argmin k k (18.60)

is called the orthogonal projection operator to the subspace .

Lemma 18.10 The element = is unique and ( ) = 0 for
any .

Proof. See Subsection 18.3.2.

The following evident properties of the projection operator hold.

Proposition 18.2

1. if and only if =

2. Let be the orthogonal complement to , that is,

:= { H p } (18.61)

Then any H can be represented as = + where
and . Then the operator L ¡H ¢

, defining the
orthogonal projection any point from H to , has the following
representation:

= (18.62)

3. if and only if = 0.

4. is linear operator, i.e., for any real and one has

( 1 + 2) = ( 1) + ( 2) (18.63)

5.
k k = 1 (18.64)

Indeed, k k2 = k + ( ) k2 = k k2 + k( ) k2 that
implies k k2 k k2 and thus k k 1. On the other hand, if
6= {0}, take 0 with k 0k = 1. Then 1 = k 0k = k 0k
k k k 0k = k k. The inequalities k k 1 and k k 1 give

(18.64).
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6.
2 = (18.65)

since for any we have 2 ( ) = .

7. is self-adjoint, that is,

= (18.66)

8. For any H

( ) = ( 2 ) = ( ) = k k2 (18.67)

that implies
( ) 0 (18.68)

9. k k = k k if and only if .

10. For any H
( ) k k2 (18.69)

that follows from (18.67), the Cauchy - Bounyakovsky - Schwartz
inequality and (18.64).

11. Let = L (H H) and 2 = . Then is obliga-
tory an orthogonal projection operator to some subspace =
{ H | = } H. Indeed, since = + ( ) it
follows that = 2 = ( ) and ( ) .

The following lemma can be easily verified.

Lemma 18.11 Let 1 be the orthogonal projector to a subspace 1

and 2 be the orthogonal projector to a subspace 2. Then following
5 statements are equivalent:

1.
2 1

2.
1 2 = 2 1 = 2
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3. k 2 k k 1 k for any H.
4. ( 2 ) ( 1 ) for any H.

Corollary 18.9

1. 2 1 if and only if 1 2 = 0.

2. 1 2 is a projector if and only if 1 2 = 2 1.

3. Let (1 = 1 ) be a projection operators. Then
X
=1

is a

projection operator too if and only if

=

4. 1 2 is a projection operator if and only if 1 2 = 2, or
equivalently, when 1 2.

18.6 Monotonic, nonnegative and
coercive operators

Remember the following elementary lemma from Real Analysis.

Lemma 18.12 Let : R R be a continuous function such that

( ) [ ( ) ( )] 0 (18.70)

for any R and

( ) when | | (18.71)

Then the equation ( ) = 0 has a solution. If (18.70) holds in the
strong sense, i.e.,

( ) [ ( ) ( )] 0 when 6= (18.72)

then the equation ( ) = 0 has a unique solution.
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Proof. For from (18.70) it follows that ( ) is non-
decreasing function and, in view of (18.71), there exist numbers
and such that ( ) 0 and ( ) 0. Then, considering
( ) on [ ], by the theorem on intermediate values, there exists a

point [ ] such that ( ) = 0. If (18.72) is fulfilled, then ( ) is
monotonically increasing function and the root of the function ( )
is unique.
The following definitions and theorems represent the generalization

of this lemma to functional spaces and nonlinear operators.

18.6.1 Basic definitions and properties

Let X be a real separable normed space and X be a space dual to
X . Consider a nonlinear operator : X X (D ( ) = X R ( )
X ) and, as before, denoted by ( ) = h i the value of the linear
functional X on the element X .

Definition 18.23

1. An operator is said to be monotone if for any D ( )

h ( ) ( )i 0 (18.73)

2. It is called strictly monotone if for any 6=

h ( ) ( )i 0 (18.74)

and the equality is possible only if = .

3. It is called strongly monotone if for any D ( )

h ( ) ( )i (k k) k k (18.75)

where the nonnegative function ( ), defined at 0, satisfies
the condition (0) = 0 and ( ) when .

4. An operator is called nonnegative if for all D ( )

h ( )i 0 (18.76)
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5. An operator is positive if for all D ( )

h ( )i 0 (18.77)

6. An operator is called coercive (or, strongly positive) if for
all D ( )

h ( )i (k k) (18.78)

where function ( ), defined at 0, satisfies the condition
( ) when .

Example 18.15 The function ( ) = 3 + 1 is the strictly
monotone operator in R.

The following lemma installs the relation between monotonicity
and coercivity properties.

Lemma 18.13 If an operator : X X is strongly monotone
then it is coercive with

(k k) = ( ) k (0)k (18.79)

Proof. By the definition (when = 0) it follows that

h ( ) (0)i (k k) k k
This implies

h ( )i h (0)i+ (k k) k k (k k) k k
k k k (0)k = [ (k k) k (0)k] k k

that proves the lemma.

Remark 18.6 Notice that an operator : X X is coercive then
k ( )k when k k . This follows from the inequalities

k ( )k k k h ( )i (k k) k k
or, equivalently, from k ( )k (k k) when k k .

Next theorem generalizes Lemma 18.12 to the nonlinear vector-
function case.
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Theorem 18.15 ((Trenogin 1980)) Let : R R be a nonlin-
ear operator (a vector function) which is continuous everywhere in R
and such that for any X

h ( ) ( )i k k2, 0 (18.80)

(i.e., in (18.75) ( ) = ). Then the system of nonlinear equations

( ) = 0 (18.81)

has a unique solution R .

Proof. Let us apply the induction method. For = 1 the re-
sult is true by Lemma 18.12. Let it be true in R 1 ( 2). Show
that this results holds in R . Consider in R a standard orthonormal
basis { } =1 ( = ( ) =1). Then ( ) can be represented as ( )

= { ( )} =1, =
X
=1

. For some fixed R define the opera-

tor by : R 1 R 1 for all =
1X

=1

acting as ( ) :=

{ ( + )} 1
=1 . Evidently, ( ) is continuos on R 1 and, by the

induction supposition, for any R 1 it satisfies the following
inequality

h ( ) ( )i = ( ) [ ( + ) ( + )]+
1X

=1

( ) [ ( + ) ( + )] k k2

This means that the operator also satisfies (18.80). By the induction
supposition the system of nonlinear equations

( + ) = 0 = 1 1 (18.82)

has a unique solution ˆ R 1. This exactly means that there exists

a vector-function ˆ =
1X

=1

: R R
1 which solves the system

of nonlinear equations ( ) = 0. It is not di cult to check that the
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function ˆ = ˆ ( ) is continuous. Consider then the function ( ) :
( + ). It is also not di cult to check that this function satisfies

all conditions of Lemma 18.12. Hence, there exists such R that
( ) = 0. This exactly means that the equation (18.81) has a unique

solution.
It seems to be useful the following proposition.

Theorem 18.16 ((Trenogin 1980)) Let : R R be a contin-
uous monotonic operator such that for all R with k k the
following inequality holds:

( ( )) 0 (18.83)

Then the equation ( ) = 0 has a solution such that k k .

Proof. Consider the sequence { }, 0 0 and the as-

sociated sequence { }, : R R of the operators defined by
( ) := + ( ). Then, in view of monotonicity of , we have

for all R

h ( ) ( )i = ( ( ) ( )) =

( ( ) + ( ( ) ( )) k k2

Hence, by Theorem 18.15 it follows that the equation ( ) = 0 has
the unique solution such that k k . Indeed, if not, we obtain
the contradiction: 0 = ( ( )) k k2 0. Therefore, the
sequence { } R is bounded. By the Bolzano-Weierstrass theorem
there exists a subsequence

© ª
convergent to some point ¯ R

when . This implies 0 = ( ) = +
¡ ¢

. Since
( ) is continuous then when we obtain (¯). Theorem is

proven.

18.6.2 Galerkin method for equations with
monotone operators

The technique given below presents the constructive method for find-
ing an approximative solution of the operator equation ( ) = 0
where : X X (D ( ) = X R ( ) X ). Let { } =1 be a com-
plete sequence of linearly independent elements from X , and X be a
subspace spanned on 1 .
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Definition 18.24 The element X having the construction

=
X
=1

(18.84)

is said to be the Galerkin approximation to the solution of the
equation ( ) = 0 with the monotone operator if it satisfies the
following system of equations

h ( )i = 0 = 1 (18.85)

or, equivalently, X
=1

h ( )i = 0 (18.86)

Remark 18.7

1. It is easy to prove that is a solution of (18.85) if and only if
h ( )i = 0 for any X .

2. The system (18.85) can be represented in the operator form ¯
= where the operator is defined by (18.85) with ¯ :=

( 1 ). Notice that k k
vuutX

=1

k k2. In view of this, the

equation (18.85) can be rewritten in the standard basis as

h ( ¯ )i = 0 = 1 (18.87)

Lemma 18.14 If an operator : X X (D ( ) = X R ( ) X )
is strictly monotone (18.74) then

1. The equation (18.81) has a unique solution.

2. For any the system (18.85) has a unique solution.
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Proof. If and are two solutions of (18.81), then ( ) = ( ) =
0, and, hence, h ( ) ( )i = 0 that, in view of (18.74), takes
place if and only if = . Again, if 0 and 00 are two solutions of
(18.85) then h 0 ( 00)i = h 00 ( 0 )i = h 0 ( 0 )i = h 00 ( 00)i
= 0, or, equivalently,

h 0 00 ( 0 ) ( 00)i = 0

that, by (18.74), is possible if and only if 0 = 00 .

Lemma 18.15 ((Trenogin 1980)) Let an operator : X X
(D ( ) = X R ( ) X ) is monotone and semi-continuous, and
there exists a constant 0 such that for all X with k k
we have h ( )i 0. Then for any the system (18.85) has the
solution X such that k k .

Proof. It is su cient to introduce in R the operator defined
by

(¯ ) := {h ( ¯ )i} =1

and to check that it satisfies all condition of Theorem 18.16.
Based on these two lemmas it is possible to prove the following

main result on the Galerkin approximations.

Proposition 18.3 ((Trenogin 1980)) Let the conditions of Lemma
18.15 be fulfilled and { } is the sequence of solutions of the system
(18.85). Then the sequence { ( )} weakly converges to zero.

18.6.3 Main theorems on the existence of solu-
tions for equations with monotone opera-
tors

Theorem 18.17 ((Trenogin 1980)) Let : X X (D ( ) = X
R ( ) X ) be an operator, acting from a real separable reflexive
Banach space X in to its dual space X , which is monotone and semi-
continuous. Let also there exists a constant 0 such that for all
X with k k we have h ( )i 0. Then the equation ( ) =

0 has the solution such that k k .
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Proof. By Lemma 18.15 for any the Galerkin system (18.85) has
the solution such that k k . By reflexivity, from any sequence
{ } one can take out the subsequence { 0} weakly convergent to
some 0 X such that k 0k . Then, by monotonicity of , it
follows that

0 := h 0 ( ) ( 0)i 0

But 0 = h 0 ( )i h ( 0)i, and, by Proposition 18.3,
h ( 0)i 0 weakly if 0 . Hence, 0 h 0 ( )i, and,
therefore for all X

h 0 ( )i 0 (18.88)

If ( 0) = 0 then the theorem is proven. Let now ( 0) 6= 0. Then,
by the Corollary 18.5 from the Hahn-Banach theorem 18.6 (for the
case X = X ), it follows the existence of the element 0 X such
that h 0 ( 0)i = k ( 0)k. Substitution of := 0 0 ( 0)
in to (18.88) implies h 0 ( 0 0)i 0 that for +0 gives
h 0 ( 0)i = k ( 0)k 0. This is equivalent to the identity ( 0) =
0. So, the assumption that ( 0) 6= 0 is incorrect. Theorem is proven.

Corollary 18.10 Let an operator be, additionally, coercive. Then
the equation

( ) = (18.89)

has a solution for any X .

Proof. For any fixed X define the operator ( ) : X X
acting as ( ) := ( ) . It is monotone and semi-continuous too.
So, we have

h ( )i = h ( )i h i (k k) k k k k k k =
[ (k k) k k] k k

and, therefore, there exists 0 such that for all X with k k
one has h ( )i 0. Hence, the conditions of Theorem 18.17 hold
that implies the existence of the solution for the equation ( ) = 0.
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Corollary 18.11 If in Corollary 18.10 the operator is strictly
monotone, then the solution of (18.89) is unique, i.e., there exists the
operator 1 inverse to .

Example 18.16 (Existence of the unique solution for ODE
boundary problem) Consider the following ODE boundary problem

D ( ) ( ) = 0, ( )

D ( ) :=
X
=1

( 1)
©

( ) ( )
ª

:= is the di erentiation operator

( ) = ( ) = 0 0 1

(18.90)

in the Sobolev space 2 ( ) (18.9). Suppose that ( ) for all 1

and 2 satisfies the condition

[ ( 1) ( 2)] ( 1 2) 0

Let for the functions ( ) the following additional condition is fulfilled
for some 0:

Z
=

ÃX
=1

( )
£

( )
¤2! k k

2 ( )

Consider now in 2 ( ) the bilinear form

( ) :=

Z
=

X
=1

( )
£

( )
¤ £

( )
¤

+

Z
=

( ( )) ( )

defining in 2 ( ) the nonlinear operator

( ( ) )
2 ( ) = ( )

which is continuos and strongly monotone since

( 1 ) ( 2 ) k 1 2k
2 ( )

Then by Theorem 18.17 and Corollary 18.10 it follows that the problem
(18.90) has the unique solution.
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18.7 Di erentiation of Nonlinear Opera-
tors

Consider a nonlinear operator : X Y acting from a Banach space
X to another Banach space Y and having a domain D ( ) X and a
range R ( ) Y.

18.7.1 Fréchet derivative

Definition 18.25 We say that an operator : X Y (D ( )
X ,R ( ) Y) acting in Banach spaces is Fréchet-di erentiable in
a point 0 D ( ), if there exists a linear bounded operator 0 ( 0)
L (X Y) such that

( ) ( 0) =
0 ( 0) ( 0) + ( 0)

k ( 0)k = (k 0k) (18.91)

or, equivalently,

lim
0

( ) ( 0) h 0
0 ( 0)i

k 0k = 0 (18.92)

Definition 18.26 If the operator : X Y (D ( ) X ,R ( )
Y), acting in Banach spaces, is Fréchet-di erentiable in a point
0 D ( ) the expression

( 0 | ) := h 0 ( 0)i (18.93)

is called the Fréchet di erential of the operator in the point
0 D ( ) under the variation X , that is, the Fréchet-di erential
of in 0 is, nothing more, then the value of the operator 0 ( 0) at
the element X .

Remark 18.8 If originally ( ) is a linear operator, namely, if
( ) = where L (X Y), then 0 ( 0) = in any point 0

D ( ).

Several simple propositions follows from these definitions.
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Proposition 18.4

1. If : X Y and both operators are
Fréchet-di erentiable in 0 X then

( + )0 ( 0) =
0 ( 0) +

0 ( 0) (18.94)

and for any scalar

( )0 ( 0) =
0 ( 0) (18.95)

2. If : X Y is Fréchet-di erentiable in 0 D ( ) and :
Z X is Fréchet-di erentiable in 0 D ( ) such that ( 0) =

0 then is well-defined and continuous in the point 0 the super-
position ( ) of the operators and , namely,

( ( )) := ( ) ( ) (18.96)

and
( )0 ( 0) =

0 ( 0)
0 ( 0) (18.97)

Example 18.17 In finite-dimensional spaces : X = R Y = R
and : Z = R X = R we have the systems of two algebraic
nonlinear equations

= ( ) = ( )

and, moreover,

0( 0) = :=

°°°° ( 0)
°°°°
=1 ; =1

where is called the Jacobi-matrix. Additionally, (18.97) is con-
verted in to the following representation:

( )0 ( 0) =

°°°°°
X
=1

( 0) ( 0)
°°°°°
=1 ; =1
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Example 18.18 If is the nonlinear integral operator acting in
[ ] and is defined by

( ) := ( )

Z
=

( ( ))

then 0( 0) exists in any point 0 [ ] such that

0( 0) = ( )

Z
=

( 0( ))
( )

18.7.2 Gáteaux derivative

Definition 18.27 If for any X there exists the limit

lim
+0

( 0 + ) ( 0)
= ( 0 | ) (18.98)

then the nonlinear operator ( 0 | ) is called the first-variation
of the operator ( ) in the point 0 X at the direction .

Definition 18.28 If in (18.98)

( 0 | ) = 0 ( )=h 0i (18.99)

where 0 L (X Y) is a linear bounded operator then isGáteaux-
di erentiable in a point 0 D ( ) and the operator 0 :=

0 ( 0)
is called the Gáteaux derivative of in the point 0 (independently
on ). Moreover, the value

( 0 | ) := h 0i (18.100)

is known as the Gáteaux di erential of in the point 0 at the
direction .

It is easy to check the following connections between the Gáteaux
and Fréchet di erentiability.
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Proposition 18.5

1. The Fréchet-di erentiability implies the Gáteaux-di erentiability.

2. The Gáteaux-di erentiability does not guarantee the Fréchet-
di erentiability. Indeed, for the function

( ) =

½
1 if = 2

0 if 6= 2

which is, evidently, is not di erentiable in the point (0 0) in the
Fréchet sense, the Gáteaux di erential in the point (0 0) exists
and equal to zero since, in view of the properties (0 0) = 0 and

( ) = 0 for any ( ), one has
( ) (0 0)

= 0.

3. The existence of the first variation does not imply the existence
of the Gáteaux di erential.

18.7.3 Relation with "Variation Principle"

The main justification of the concept of di erentiability is related with
the optimization (or, optimal control) theory in Banach spaces and is
closely connected with the, so-called, Variation Principle which allows
us to replace a minimization problem by an equivalent problem in
which the loss function is linear.

Theorem 18.18 ((Aubin 1979)) Let : U Y be a functional
Gáteaux-di erentiable on a convex subset X of a topological space U .
If X minimizes ( ) on X then

h 0 ( )i = min
X
h 0 ( )i (18.101)

In particular, if is an interior point of X , i.e., intX , then this
condition implies

0 ( ) = 0 (18.102)

Proof. Since X is convex then ˜ = + ( ) X for any
(0 1] whenever X . Therefore, since is a minimizer of ( )

onX , we have (˜) ( )
0. Taking the limit +0 we deduce
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from the Gáteaux-di erentiability of ( ) on X that h 0 ( )i
0 for any X . In particular if intX then for any X there

exists 0 such that = + X , and, hence, h 0 ( )i
= h 0 ( )i 0 that is possible for any any X if 0 ( ) = 0.
Theorem is proven.

18.8 Fixed-point Theorems

This section deals with the most important topics of Functional Analy-
sis related with

• The existence principle
• The convergence analysis

18.8.1 Fixed-points of a nonlinear operator

In this section we follows ((Trenogin 1980)) and ((Zeidler 1995)).
Let an operator : X Y (D ( ) X ,R ( ) Y) acts in Banach

space X . Suppose that the setM := D ( ) R ( ) is not empty.

Definition 18.29 The point M is called a fixed point of the
operator if it satisfies the equality

( ) = (18.103)

Remark 18.9 Any operator equation (18.81): ( ) = 0 can be trans-
formed to the form (18.103). Indeed, one has

˜ ( ) := ( ) + =

That’s why any results, concerning the existence of the solution to the
operator equation (18.81), can be considered as ones but with respect
to the equation ˜ ( ) = . The inverse statement is also true.

Example 18.19 The fixed points of the operator ( ) = 3 are
{0 1 1} that follows from the relation 0 = 3 = ( 2 1) =
( 1) ( + 1).
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Example 18.20 Let try to find the fixed-points of the operator

( ) :=

1Z
=0

( ) ( ) + ( ) (18.104)

assuming that it acts in [0 1] (which is real) and that

1Z
=0

( )

1 4 By the definition (18.103) we have ( )

1Z
=0

( ) + ( ) = ( ).

Integrating this equations leads to the following:

1Z
=0

( )

2

+

1Z
=0

( ) =

1Z
=0

( )

that gives
1Z

=0

( ) =
1

2
±

vuuut1

4

1Z
=0

( ) (18.105)

So, any function ( ) [0 1] satisfying (18.105) is a fixed point of
the operator (18.104).

The main results related to the existence of the solution of the
operator equation

( ) = (18.106)

are as follows:

• The contraction principle (see (14.17)) or the Banach the-
orem (1920) which state that if the operator : (
is a compact) is -contractive, i.e., for all 0

k ( ) ( 0)k k 0k [0 1)

then

a) the solution of (18.106) exists and unique;

b) the iterative method +1 = ( ) exponentially converges to
this solution.
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• The Brouwer fixed-point theorem for finite-dimensional Ba-
nach space.

• The Schauder fixed-point theorem for infinite-dimensional
Banach space.

• The Leray-Schauder principle which state that a priory es-
timates yield existence.

There are known many others versions of these fixed-point theorem
such as Kakutani, Ky-Fan and etc. related with some generalizations
of the theorems mentioned above. For details see (Aubin 1979) and
(Zeidler 1986).

18.8.2 Brouwer fixed-point theorem

To deal correctly with the Brouwer fixed-point theorem we need the
preparations considered below.

The Sperner lemma

Let

( 0 ) :=(
X | =

X
=0

0
X
=0

= 1

)
(18.107)

be an -simplex in a finite-dimensional normed space X and
{ 1 } be a triangulation of consisting of -simplices
( = 1 ) (see Fig.18.1) such that

a) =
=1

;

b) if 6= , then the intersection
6=

or empty or a common face

of dimension less than .

Let one of the numbers (0 1 ) be associated with each vertex
of the simplex . So, suppose that if := ( 0 ), then

one of numbers 0, , is associated with .
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Figure 18.1: -simplex and its triangulation.

Definition 18.30 is called a Sperner simplex if and only if all
of its vertices carry di erent numbers, i.e., the vertices of carry
di erent numbers 0 1 .

Lemma 18.16 (Sperner) The number of Sperner simplices is al-
ways odd.

Proof. It can be easily proven by induction if note that for = 1
each is a 1-simplex (segment). In this case a 0-face (vertex) of
is called distinguished if and only if it carries the number 0. So, one
has exactly two possibilities (see Fig.18.2 a): i) has precisely one
distinguished ( 1)-face, i.e., is a Sperner simplex; ii) has pre-
cisely two or more distinguished ( 1)-face, i.e., is not a Sperner
simplex. But since the distinguished 0-face occur twice in the interior
and once on the boundary, the total number of distinguished 0-faces
is odd. Hence, the number of Sperner simplices is odd. Let now
= 2 (see Fig.18.2 b). Then is 2-simplex and a 1-face (segment)

of is called distinguished if and only if it carries the numbers 0 1.
The the conditions i) and ii) given above are satisfied for = 2.
The distinguished 1-faces occur twice in the interior and, by the case
= 1, it follows that the number of the distinguished 1-faces is odd.

Therefore, the number of the Sperner simplices is odd. Now let 3.
Supposing that the lemma is true for ( 1), as in the case = 2,
we easily obtain the result.
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Figure 18.2: The Sperner simplex.

The Knaster-Kuratowski-Mazurkiewicz (KKM) lemma

Lemma 18.17 (Knaster-Kuratowski-Mazurkiewicz) Let
( 0 ) be a -simplex in a finite-dimensional normed space

X . Suppose we are given closed sets { } =1 in X such that

( 0 )
=0

(18.108)

for all possible systems of indices { 0 } and all = 0 . Then
there exists a point ( 0 ) such that for all =
0 .

Proof. Since for = 0 the set 0 ( 0) consists of a single point
0, and the statements looks trivial. Let 1. Let be any
vertex of ( = 0 ) (for a triangulation 1 ) such that

( 0 ). By the assumptions of this lemma there exists
a set such that . We may associate the index with the
vertex . By the Sperner lemma 18.16 it follows that there exists a
Sperner simplex whose vertices carry the numbers 0 . Hence
the vertices 0, , satisfy the condition ( = 0 ).
Consider now a sequence of triangulations of simplex ( 0 )
such that the diameters of the simplices of the triangulations tend to
zero (selecting, for example, a sequence barycentric subdivisions of
). So, there are points ( )

( = 0 ; = 1 2 ) such that
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lim diam
³

( )
0

( )
´
= 0. Since the simplex ( 0 ) is

a compact, there exists a subsequence
n

( )
o
such that ( )

( 0 ) for all = 0 . And since the set is closed, this
implies for all = 0 . Lemma is proven.
Now we are ready to formulate the main result of this section

The Brouwer theorem

Theorem 18.19 (Brouwer, 1912) The continuos operator : M
M has at least one fixed point whenM is a compact, convex, non-

empty set in a finite-dimensional normed space over the field F (real
or complex).

Proof. a) Consider this operator whenM = and demonstrate
that the continuos operator : ( = 0 1 ) has at least
one fixed point when = ( 0 ) is a -simplex in a finite-
dimensional normed space X . For = 0 the set 0 consists of a single
point and the the statement is trivial. For = 1 the statement is
also trivial. Let now = 2. Then 2 = 2 ( 0 1 2) and any point
in 2 can be represented as

=
2X
=0

( ) 0
2X
=0

= 1 (18.109)

We set
:= { | ( ) ( ) = 0 1 2}

Since ( ) and are continuous on , the sets are closed and the

condition (18.108) of Lemma 18.17 is fulfilled, that is,
=0

( = 0 1 2). Indeed, if it is not true, then there exists a point

2 ( 0 1 2) such that
=0

, i.e., ( ) ( ) for all

= 0 . But this is in the contradiction to the representation
(18.109). Then by Lemma 18.17 there is a point 2 such that
( = 0 1 2). This implies ( ) ( ) for all = 0 1 2. Since

also 2 we have

2X
=0

( ) =
2X
=0

( ) = 1
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and, hence, ( ) = ( ) for all = 0 1 2 that is equivalent to the
expression = . So, is the desired fixed-point of in the case
= 2. In 3 one can use the same arguments as for = 2.
b) Now, whenM is a compact, convex, non-empty set in a finite-

dimensional normed space, it is easy to show thatM is homeomorphic
to some -simplex ( = 0 1 2 ). This means that there exist home-
omorphisms :M B and : B such that the map

1 :M B 1

is the desired homeomorphism from the given setM onto the simplex
. Using now this fact shows that each continuos operator : M
M has at least one fixed point. This completes the proof.

Corollary 18.12 The continuous operator : K K has at least
fixed point when K is a subset of a normed space that is homeomorphic
to a setM as it is considered in Theorem 18.19.

Proof. Let :M K be a homeomorphism. Then the operator

1 :M K K 1M

is continuous. By Theorem 18.19 there exists a fixed point of the
operator := 1 , i.e., 1 ( ( )) = . Let = .
Then = , K. Therefore has a fixed point. Corollary is
proven.

18.8.3 Schauder fixed-point theorem

This result represents the extension of the Brouwer fixed-point theo-
rem 18.19 to a infinite-dimensional Banach space.

Theorem 18.20 (Schauder, 1930) The compact operator :M
M has at least one fixed-point when M is a bounded, closed convex,
nonempty subset of a Banach space X over the field F (real or com-
plex).
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Proof ((Zeidler 1995)). Let M. Replacing with 0, if
necessary, one may assume that 0 M. By Theorem 18.7 on the ap-
proximation of compact operators it follows that for every = 1 2
there exists a finite-dimensional subspace X of X and a continuous
operator :M X such that k ( ) ( )k 1 for any
M. DefineM :=M X . ThenM is a bounded, closed, convex

subset of X with 0 M and (M) M sinceM is convex. By
the Brouwer fixed-point theorem 18.19 the operator :M M
has a fixed point, say , that is, for all = 1 2 we have ( )
= M . Moreover, k ( ) k 1. Since M M, the
sequence { } is bounded. The compactness of :M M implies
the existence of a sequence {˜ } such that ( ) when .
By the previous estimate

k k = k[ ( )] + [ ( ) ]k
k[ ( )]k+ k ( ) k 0

So, . Since ( ) M and the setM is closed, we get that
M. And, finally, since the operator :M M is continuous, it

follows that ( ) = M. Theorem is proven.

Example 18.21 (Existence of solution for integral equations)
Let solve the following integral equation

( ) =

Z
=

( ( ))

[ ] R

(18.110)

Define
:=
©
( ) R

3 | [ ] | | ª
Proposition 18.6 ((Zeidler 1995)) Assume that
a) The function : R is continuous;

b) | | , :=
1

max
( )

| ( )|;
Setting X := [ ] andM := { X | k k }, it follows that

the integral equation (18.110) has at least one solution M.
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Proof. For all [ ] define the operator

( ) ( ) :=

Z
=

( ( ))

Then the integral equation (18.110) corresponds to the following fixed-
point problem = M. Notice that the operator :M M
is compact and for all M

k k | | max
[ ]

¯̄̄
¯̄̄ Z
=

( ( ))

¯̄̄
¯̄̄ | |

Hence, (M) M. Thus, by the Schauder fixed-point theorem 18.20
it follows that the equation (18.110) has a solution.

18.8.4 The Leray-Schauder principle and a priory
estimates

In this subsection we will again concern the solution of the operator
equation

( ) = X (18.111)

using the properties of the associated parametrized equation

( ) = X [0 1) (18.112)

For = 0 the equation (18.112) has the trivial solution = 0, and for
= 1 coincides with (18.111). Assume that the following conditions
holds:

(A) There is a number 0 such that if is a solution of (18.112),
then

k k (18.113)

Remark 18.10 Here we do not assume that (18.112) has a solution
and, evidently, that the assumption (A) is trivially satisfied if the set
(X ) is bounded since k ( )k for all X .
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Theorem 18.21 (Leray-Schauder, 1934) If the compact operator
: X X given on the Banach space X over the field F (real or com-

plex) satisfies the assumption (A), then the original equation (18.111)
has a solution (non obligatory unique).

Proof ((Zeidler 1995)). Define the subset

M := { X | k k 2 }

and the operator

( ) :=
( ) if k ( )k 2

2
( )

k ( )k if k ( )k 2

Obviously, k ( )k 2 for all X that implies (M) M.
Show that : M M is a compact operator. First, notice that
is continuous because of the continuity of . Then consider the

sequences { } M and { } such that a) { } M or b) { } M.
In the case a) the boundedness ofM and the compactness of imply
that there is a subsequence { } such that ( ) = ( )
as . In the case b) we may choose this subsequence so that
1 k ( )k and ( ) . Hence, ( ) 2 . So, is
compact. The Schauder fixed-point theorem 18.20 being applied to the
compact operator :M M provides us with a point M such
that = ( ). So, if k ( )k 2 , then ( ) = ( ) = and we
obtain the solution of the original problem. Another case k ( )k 2
is impossibly by the assumption (A). Indeed, suppose ( ) = for
k ( )k 2 . Then = = ( ) with := 2 k ( )k 1. This
forces k k = k ( )k = 2 that contradicts with the assumption (A).
Theorem is proven.

Remark 18.11 Theorem 18.21 turns out to be very useful for the
justification of the existence of solution for di erent types of partial
di erential equations (such as the famous Navier-Stokes equations for
viscous fluids, quasi-linear elliptic and etc.).


